欧美成人永久免费_欧美日本五月天_A级毛片免看在线_国产69无码,亚洲无线观看,精品人妻少妇无码视频,777无码专区,色大片免费网站大全,麻豆国产成人AV网,91视频网络,亚洲色无码自慰

當前位置:網(wǎng)站首頁 >> 作文 >> 最新六年級數(shù)學期末測試試卷分析匯總(5篇)

最新六年級數(shù)學期末測試試卷分析匯總(5篇)

格式:DOC 上傳日期:2023-04-14 20:49:32
最新六年級數(shù)學期末測試試卷分析匯總(5篇)
時間:2023-04-14 20:49:32     小編:zdfb

在日常學習,、工作或生活中,大家總少不了接觸作文或者范文吧,,通過文章可以把我們那些零零散散的思想,聚集在一塊,。相信許多人會覺得范文很難寫,?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧,。

六年級數(shù)學期末測試試卷分析篇一

1,、加法交換律:兩數(shù)相加交換加數(shù)的位置,和不變,。

2,、加法結合律:a + b = b + a

3、乘法交換律:a × b = b × a

4,、乘法結合律:a × b × c = a ×(b × c)

5,、乘法分配律:a × b + a × c = a × b + c

6、除法的性質(zhì):a ÷ b ÷ c = a ÷(b × c)

7,、除法的性質(zhì):在除法里,,被除數(shù)和除數(shù)同時擴大(或縮小)相同的倍數(shù),,商不變,。 o除以任何不是o的數(shù)都得o。 簡便乘法:被乘數(shù),、乘數(shù)末尾有o的乘法,,可以先把o前面的相乘,零不參加運算,,有幾個零都落下,,添在積的末尾。

8,、有余數(shù)的除法: 被除數(shù)=商×除數(shù)+余數(shù)

二,、方程、代數(shù)與等式

等式:等號左邊的數(shù)值與等號右邊的數(shù)值相等的式子叫做等式,。 等式的基本性質(zhì):等式兩邊同時乘以(或除以)一個相同的數(shù),,等式仍然成立。

方程式:含有未知數(shù)的等式叫方程式,。

一元一次方程式:含有一個未知數(shù),,并且未知數(shù)的次 數(shù)是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算,。即例出代有χ的算式并計算,。

代數(shù): 代數(shù)就是用字母代替數(shù),。

代數(shù)式:用字母表示的式子叫做代數(shù)式。如:3x =ab+c

三,、分數(shù)

分數(shù):把單位“1”平均分成若干份,,表示這樣的一份或幾分的數(shù),叫做分數(shù),。

分數(shù)大小的比較:同分母的,。分數(shù)相比較,分子大的大,,分子小的小,。異分母的分數(shù)相比較,先通分然后再比較,;若分子相同,,分母大的反而小。

分數(shù)的加減法則:同分母的分數(shù)相加減,,只把分子相加減,,分母不變。異分母的分數(shù)相加減,,先通分,,然后再加減。

分數(shù)乘整數(shù),,用分數(shù)的分子和整數(shù)相乘的積作分子,,分母不變。

分數(shù)乘分數(shù),,用分子相乘的積作分子,,分母相乘的積作為分母。

分數(shù)的加,、減法則:同分母的分數(shù)相加減,,只把分子相加減,,分母不變,。異分母的分數(shù)相加減,先通分,,然后再加減,。

倒數(shù)的概念:1.如果兩個數(shù)乘積是1,我們稱一個是另一個的倒數(shù),。這兩個數(shù)互為倒數(shù),。1的倒數(shù)是1,0沒有倒數(shù),。

分數(shù)除以整數(shù)(0除外),,等于分數(shù)乘以這個整數(shù)的倒數(shù)。

分數(shù)的基本性質(zhì):分數(shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分數(shù)的大小

分數(shù)的除法則:除以一個數(shù)(0除外),,等于乘這個數(shù)的倒數(shù),。

真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。

假分數(shù):分子比分母大或者分子和分母相等的分數(shù)叫做假分數(shù),。假分數(shù)大于或等于1,。

帶分數(shù):把假分數(shù)寫成整數(shù)和真分數(shù)的形式,叫做帶分數(shù),。

分數(shù)的基本性質(zhì):分數(shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),,分數(shù)的大小不變。

必背定義,、定理公式

三角形的面積=底×高÷2,。 公式 s= a×h÷2

正方形的面積=邊長×邊長 公式 s= a×a

長方形的面積=長×寬 公式 s= a×b

平行四邊形的面積=底×高 公式 s= a×h

梯形的面積=(上底+下底)×高÷2 公式 s=(a+b)h÷2

內(nèi)角和:三角形的內(nèi)角和=180度。

長方體的體積=長×寬×高 公式:v=abh

長方體(或正方體)的體積=底面積×高 公式:v=abh

正方體的體積=棱長×棱長×棱長 公式:v=aaa

圓的周長=直徑×π 公式:l=πd=2πr

圓的面積=半徑×半徑×π 公式:s=πr2

圓柱的表(側)面積:圓柱的表(側)面積等于底面的周長乘高,。公式:s=ch=πdh=2πrh

圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積,。公式:s=ch+2s=ch+2πr2

圓柱的體積:圓柱的體積等于底面積乘高。公式:v=sh

圓錐的體積=1/3底面×積高,。公式:v=1/3sh

分數(shù)的加,、減法則:同分母的分數(shù)相加減,只把分子相加減,,分母不變,。異分母的分數(shù)相加減,先通分,,然后再加減,。

分數(shù)的乘法則:用分子的積做分子,用分母的積做分母,。

分數(shù)的除法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù),。

讀懂理解會應用以下定義定理性質(zhì)公式

六年級數(shù)學期末測試試卷分析篇二

2.1分數(shù)與除法

一般地,兩個正整數(shù)相除的商可用分數(shù)表示,,即被除數(shù)÷除數(shù)=用字母表示為p÷q=(p,、q為正整數(shù))

2.2分數(shù)的基本性質(zhì)

1、分數(shù)的分子和分母同時乘以一個不為零的整數(shù),,分數(shù)的值不變

2,、分子分母只有公因數(shù)1的分數(shù)叫做最簡分數(shù)

3、把一個分數(shù)化成同它相等,,但分子,、分母都比較小的分數(shù),叫做約分

2.3分數(shù)的比較大小

1,、同分母分數(shù)的大小只需要比較分子的大小,,分子大的比較大,,分子小的比較小

2、通分的一般步驟是:

(1)求公分母——求分母的最小公倍數(shù),;

(2)根據(jù)分數(shù)的基本性質(zhì),,將每個分數(shù)化成分母相同的分數(shù)。

3,、異分母分數(shù)比較大小需要先通分成同分母分數(shù)再按照同分母分數(shù)比較大小

2.4分數(shù)的加減法

1,、同分母分數(shù)相加減,分母不變,,分子相加減

2,、異分母分數(shù)相加減,先通分成同分母分數(shù),,再按照同分母分數(shù)相加減

3,、分子比分母小的分數(shù),叫做真分數(shù)

4,、分子大于或者等于分母的分數(shù)叫假分數(shù)

5,、整數(shù)與真分數(shù)相加所成的分數(shù)叫做帶分數(shù)

6、假分數(shù)化為帶分數(shù):分母不變,,整數(shù)部分為原分子除以分母的商,,分子則為原分子除以分母的余數(shù)

7、列方程求未知數(shù)的一般書寫步驟:

(1)設未知數(shù)為x

(2)根據(jù)題意列出方程

(3)根據(jù)加減互為逆運算,,表示出x等于那些數(shù)相加減

(4) 計算出x的值,,并寫出上結論

2.5分數(shù)的乘法

1、兩個分數(shù)相乘,,分子相乘作為分子,,分母相乘作為分母

2、如果乘數(shù)是帶分數(shù),,先化成假分數(shù),,再進行運算

2.6分數(shù)的除法

1、一個數(shù)與其相乘的積為1的數(shù)為這個數(shù)的倒數(shù),;0沒有倒數(shù)

2,、除以一個分數(shù)等于乘以這個分數(shù)的倒數(shù)

3、被除數(shù)或除數(shù)中有帶分數(shù)的先化成假分數(shù)再進行運算

2.7分數(shù)與小數(shù)的互化

1,、一個分數(shù)能不能化為有限小數(shù)和分數(shù)的分母有關

2,、從小數(shù)點后某一位開始不斷地重復出現(xiàn)前一個或一節(jié)數(shù)字的無限小數(shù)叫做循環(huán)小數(shù)

3、被重復的一個或一節(jié)數(shù)碼稱為循環(huán)小數(shù)的循環(huán)節(jié)

4,、一個分數(shù)總可以化為有限小數(shù)或無線循環(huán)小數(shù)

六年級數(shù)學期末測試試卷分析篇三

比例

1、理解比例的意義和基本性質(zhì),,會解比例,。

2,、理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,,能運用比例知識解決簡單的實際問題,。

3、認識正比例關系的圖像,,能根據(jù)給出的有正比例關系的數(shù)據(jù)在有坐標系的方格紙上畫出圖像,,會根據(jù)其中一個量在圖像中找出或估計出另一個量的值。

4,、了解比例尺,,會求平面圖的比例尺以及根據(jù)比例尺求圖上距離或?qū)嶋H距離。

5,、認識放大與縮小現(xiàn)象,,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似,。

6,、滲透函數(shù)思想,使學生受到辯證唯物主義觀點的啟蒙教育,。

7,、比例的意義:表示兩個比相等的式子叫做比例。如:2:1=6:

8,、組成比例的四個數(shù),,叫做比例的項。兩端的兩項叫做外項,,中間的兩項叫做內(nèi)項,。

9、比例的性質(zhì):在比例里,,兩個外項的積等于兩個兩個內(nèi)向的積,。這叫做比例的基本性質(zhì)。例如:由3:2=6:4可知3×4=2×6;或者由x×1,。5=y×1,。2可知x:y=1.2:1.5。

10,、解比例:根據(jù)比例的基本性質(zhì),,如果已知比例中的任何三項,就可以求出這個數(shù)比例中的另外一個未知項,。

求比例中的未知項,,叫做解比例。

例如:3:x=4:8,,內(nèi)項乘內(nèi)項,,外項乘外項,,則:4x=3×8,解得x=6,。

11,、正比例和反比例:

(1)成正比例的量:兩種相關聯(lián)的量,一種量變化,,另一種量也隨著變化,,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,,他們的關系叫做正比例關系,。用字母表示y/x=k(一定)

例如:

①速度一定,路程和時間成正比例,;因為:路程÷時間=速度(一定),。

②圓的周長和直徑成正比例,因為:圓的周長÷直徑=圓周率(一定),。

③圓的面積和半徑不成比例,,因為:圓的面積÷半徑=圓周率和半徑的積(不一定)。

④y=5x,,y和x成正比例,,因為:y÷x=5(一定)。

⑤每天看的頁數(shù)一定,,總頁數(shù)和天數(shù)成正比例,,因為:總頁數(shù)÷天數(shù)=每天看頁數(shù)(一定)。

(2)成反比例的量:兩種相關聯(lián)的量,,一種量變化,,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,,這兩種量就叫做成反比例的量,,他們的關系叫做反比例關系。

用字母表示x×y=k(一定)

例如:①,、路程一定,,速度和時間成反比例,因為:速度×時間=路程(一定),。

②總價一定,,單價和數(shù)量成反比例,因為:單價×數(shù)量=總價(一定),。

③長方形面積一定,,它的長和寬成反比例,因為:長×寬=長方形的面積(一定)。

④40÷x=y,,x和y成反比例,,因為:x×y=40(一定),。

⑤煤的總量一定,,每天的燒煤量和燒的天數(shù)成反比例,因為:每天燒煤量×天數(shù)=煤的總量(一定),。

12,、圖上距離:實際距離=比例尺;

例如:圖上距離2cm,,實際距離4km,,則比例尺為2cm:4km,最后求得比例尺是1:200000,。

13,、實際距離=圖上距離÷比例尺;

例如:已知圖上距離2cm和比例尺,,則實際距離為:2÷1/200000=400000cm=4km,。

14、圖上距離=實際距離×比例尺,;

例如:已知實際距離4km和比例尺1:200000,,則圖上距離為:400000×1/200000=2(cm)

六年級數(shù)學期末測試試卷分析篇四

工程問題

基本公式:

①工作總量=工作效率×工作時間

②工作效率=工作總量÷工作時間

③工作時間=工作總量÷工作效率

基本思路:

①假設工作總量為“1”(和總工作量無關);

②假設一個方便的數(shù)為工作總量(一般是它們完成工作總量所用時間的最小公倍數(shù)),,利用上述三個基本關系,,可以簡單地表示出工作效率及工作時間。

關鍵問題:

確定工作量,、工作時間,、工作效率間的兩兩對應關系。

邏輯推理

條件分析—假設法:

假設可能情況中的一種成立,,然后按照這個假設去判斷,,如果有與題設條件矛盾的情況,說明該假設情況是不成立的,,那么與他的相反情況是成立的,。例如,假設a是偶數(shù)成立,,在判斷過程中出現(xiàn)了矛盾,,那么a一定是奇數(shù)。

條件分析—列表法:

當題設條件比較多,,需要多次假設才能完成時,,就需要進行列表來輔助分析。列表法就是把題設的條件全部表示在一個長方形表格中,,表格的行,、列分別表示不同的對象與情況,,觀察表格內(nèi)的題設情況,運用邏輯規(guī)律進行判斷,。

條件分析—圖表法:

當兩個對象之間只有兩種關系時,,就可用連線表示兩個對象之間的關系,有連線則表示“是,,有”等肯定的狀態(tài),,沒有連線則表示否定的狀態(tài)。例如a和b兩人之間有認識或不認識兩種狀態(tài),,有連線表示認識,,沒有表示不認識。

邏輯計算:

在推理的過程中除了要進行條件分析的推理之外,,還要進行相應的計算,,根據(jù)計算的結果為推理提供一個新的判斷篩選條件。

簡單歸納與推理:

根據(jù)題目提供的特征和數(shù)據(jù),,分析其中存在的規(guī)律和方法,,并從特殊情況推廣到一般情況,并遞推出相關的關系式,,從而得到問題的解決,。

六年級數(shù)學期末測試試卷分析篇五

(一)分數(shù)乘法意義:

1、分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,,就是求幾個相同加數(shù)的和的簡便運算,。

“分數(shù)乘整數(shù)”指的是第二個因數(shù)必須是整數(shù),不能是分數(shù),。

2,、一個數(shù)乘分數(shù)的意義就是求一個數(shù)的幾分之幾是多少。

“一個數(shù)乘分數(shù)”指的是第二個因數(shù)必須是分數(shù),,不能是整數(shù),。(第一個因數(shù)是什么都可以)

(二)分數(shù)乘法計算法則:

1、分數(shù)乘整數(shù)的計算方法:用分子乘整數(shù)的積作分子,,分母不變,。能約分的可以先約分,再計算,。

(1)為了計算簡便能約分的可先約分再計算,。(整數(shù)和分母約分)

(2)約分是用整數(shù)和下面的分母約掉公因數(shù)。(整數(shù)千萬不能與分母相乘,,計算結果必須是最簡分數(shù)),。

2、分數(shù)乘分數(shù)的計算方法是:用分子相乘的積做分子,用分母相乘的積作分母,。(分子乘分子,,分母乘分母)

(1)如果分數(shù)乘法算式中含有帶分數(shù),要先把帶分數(shù)化成假分數(shù)再計算,。

(2)分數(shù)化簡的方法是:分子,、分母同時除以它們的公因數(shù)。

(3)在乘的過程中約分,,是把分子,、分母中,,兩個可以約分的數(shù)先劃去,,再分別在它們的上、下方寫出約分后的數(shù),。(約分后分子和分母必須不再含有公因數(shù),,這樣計算后的結果才是最簡單分數(shù))。

(4)分數(shù)的基本性質(zhì):分子,、分母同時乘或者除以一個相同的數(shù)(0除外),,分數(shù)的大小不變。

(三)積與因數(shù)的關系:

一個數(shù)(0除外)乘大于1的數(shù),,積大于這個數(shù),。a×b=c,當b>1時,c>a,。

一個數(shù)(0除外)乘小于1的數(shù),,積小于這個數(shù)。a×b=c,當b<1時,,c

一個數(shù)(0除外)乘等于1的數(shù),,積等于這個數(shù)。a×b=c,當b=1時,,c=a,。

在進行因數(shù)與積的大小比較時,要注意因數(shù)為0時的特殊情況,。

(四)分數(shù)混合運算

1,、分數(shù)混合運算的運算順序與整數(shù)混合運算的運算順序相同,先算乘法,,后算加減法,,有括號的先算括號里面的,再算括號外面的,。

2,、整數(shù)乘法運算定律對分數(shù)乘法同樣適用;運算定律可以使一些計算簡便。

乘法交換律:a×b=b×a乘法結合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)分數(shù)乘法應用題——用分數(shù)乘法解決問題

1,、求一個數(shù)的幾分之幾是多少,?(用乘法)

已知單位“1”的量,求單位“1”的量的幾分之幾是多少,,用單位“1”的量與分數(shù)相乘,。

2、巧找單位“1”的量:在含有分數(shù)(分率)的語句中,,分率前面的量就是單位“1”對應的量,,或者“占”“是”“比”字后面的量是單位“1”。

3,、求比一個數(shù)多(或少)幾分之幾的數(shù)是多少的解題方法

(1)單位“1”的量+(-)單位“1”的量×這個數(shù)量比單位“1”的量多(或少)的幾分之幾=這個數(shù)量,;

(2)單位“1”的量×[1+這個數(shù)量比單位“1”的量多(或少)的幾分之幾]=這個數(shù)量。

全文閱讀已結束,,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內(nèi)不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯(lián)系客服