范文為教學(xué)中作為模范的文章,,也常常用來(lái)指寫作的模板。常常用于文秘寫作的參考,,也可以作為演講材料編寫前的參考,。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?接下來(lái)小編就給大家介紹一下優(yōu)秀的范文該怎么寫,,我們一起來(lái)看一看吧,。
初中數(shù)學(xué)平方差公式教學(xué)設(shè)計(jì) 初中平方差公式教學(xué)設(shè)計(jì)篇一
1.使學(xué)生了解運(yùn)用公式法分解因式的意義;
2.使學(xué)生掌握用平方差公式分解因式
重 點(diǎn): 掌握運(yùn)用平方差公式分解因式.
難 點(diǎn): 將單項(xiàng)式化為平方形式,再用平方差公式分解因式;
學(xué)習(xí)方法:歸納,、概括,、總結(jié)
創(chuàng)設(shè)問(wèn)題情境,引入新課
在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,,還學(xué)習(xí)了提公因式法分解因式,,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,,即公因式,,就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成幾個(gè)因式乘積的形式.
如果一個(gè)多項(xiàng)式的各項(xiàng),,不具備相同的因式,,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過(guò)程,,就能利用這種關(guān)系找到新的因式分解的方法,,本學(xué)時(shí)我們就來(lái)學(xué)習(xí)另外的一種因式分解的方法——公式法.
1.請(qǐng)看乘法公式
(a+b)(a-b)=a2-b2 (1)
左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,,把這個(gè)等式反過(guò)來(lái)就是
a2-b2=(a+b)(a-b) (2)
左邊是一個(gè)多項(xiàng)式,,右邊是整式的乘積.大家判斷一下,第二個(gè)式子從左邊到右邊是否是因式分解?
利用平方差公式進(jìn)行的因式分解,,第(2)個(gè)等式可以看作是因式分解中的平方差公式.
a2-b2=(a+b)(a-b)
2.公式講解
如x2-16
=(x)2-42
=(x+4)(x-4).
9 m 2-4n2
=(3 m )2-(2n)2
=(3 m +2n)(3 m -2n)
例1,、把下列各式分解因式:
(1)25-16x2; (2)9a2- b2.
例2、把下列各式分解因式:
(1)9(m+n)2-(m-n)2; (2)2x3-8x.
補(bǔ)充例題:判斷下列分解因式是否正確.
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)(a2-1).
1,、教科書習(xí)題
2,、分解因式:x4-16 x3-4x 4x2-(y-z)2
3、若x2-y2=30,,x-y=-5求x+y
初中數(shù)學(xué)平方差公式教學(xué)設(shè)計(jì) 初中平方差公式教學(xué)設(shè)計(jì)篇二
教學(xué)目標(biāo)
1.使學(xué)生理解和掌握平方差公式,,并會(huì)用公式進(jìn)行計(jì)算;
2.注意培養(yǎng)學(xué)生分析、綜合和抽象,、概括以及運(yùn)算能力.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):平方差公式的應(yīng)用.
難點(diǎn):用公式的結(jié)構(gòu)特征判斷題目能否使用公式.
教學(xué)過(guò)程設(shè)計(jì)
我們已經(jīng)學(xué)過(guò)了多項(xiàng)式的乘法,,兩個(gè)二項(xiàng)式相乘,在合并同類項(xiàng)前應(yīng)該有幾項(xiàng)?合并同類項(xiàng)以后,,積可能會(huì)是三項(xiàng)嗎?積可能是二項(xiàng)嗎?請(qǐng)舉出例子.
讓學(xué)生動(dòng)腦,、動(dòng)筆進(jìn)行探討,,并發(fā)表自己的見(jiàn)解.教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進(jìn)一步思考:
兩個(gè)二項(xiàng)式相乘,,乘式具備什么特征時(shí),,積才會(huì)是二項(xiàng)式?為什么具備這些特點(diǎn)的兩個(gè)二項(xiàng)式相乘,,積會(huì)是兩項(xiàng)呢?而它們的積又有什么特征?
(當(dāng)乘式是兩個(gè)數(shù)之和以及這兩個(gè)數(shù)之差相乘時(shí),,積是二項(xiàng)式.這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),,合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了.而它們的積等于乘式中這兩個(gè)數(shù)的平方差)
繼而指出,,在多項(xiàng)式的乘法中,,對(duì)于某些特殊形式的多項(xiàng)式相乘,我們把它寫成公式,,并加以熟記,,以便遇到類似形式的多項(xiàng)式相乘時(shí)就可以直接運(yùn)用公式進(jìn)行計(jì)算.以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,,叫做乘法的平方差公式.
在此基礎(chǔ)上,,讓學(xué)生用語(yǔ)言敘述公式.
例1 計(jì)算(1+2x)(1-2x).
解:(1+2x)(1-2x)
=12-(2x)2
=1-4x2.
教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說(shuō)出本題中a,,b分別表示什么.
例2 計(jì)算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)
=(2a3+b2)(2a3-b2)
=(2a3)2-(b2)2
=4a6-b4.
教師引導(dǎo)學(xué)生發(fā)現(xiàn),,只需將(b2+2a3)中的兩項(xiàng)交換位置,就可用平方差公式進(jìn)行計(jì)算.
課堂練習(xí)
運(yùn)用平方差公式計(jì)算:
(l)(x+a)(x-a); (2)(m+n)(m-n);
(3)(a+3b)(a-3b); (4)(1-5y)(l+5y).
例3 計(jì)算(-4a-1)(-4a+1).
讓學(xué)生在練習(xí)本上計(jì)算,,教師巡視學(xué)生解題情況,,讓采用不同解法的兩個(gè)學(xué)生進(jìn)行板演.
解法1:(-4a-1)(-4a+1)
=[-(4a+l)][-(4a-l)]
=(4a+1)(4a-l)
=(4a)2-l2
=16a2-1.
解法2:(-4a-l)(-4a+l)
=(-4a)2-l
=16a2-1.
根據(jù)學(xué)生板演,教師指出兩種解法都很正確,,解法1先用了提出負(fù)號(hào)的辦法,,使兩乘式首項(xiàng)都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,,應(yīng)用平方差公式,,寫出結(jié)果.解法2把-4a看成一個(gè)數(shù),把1看成另一個(gè)數(shù),,直接寫出(-4a)2-l2后得出結(jié)果.采用解法2的同學(xué)比較注意平方差公式的特征,,能看到問(wèn)題的本質(zhì),運(yùn)算簡(jiǎn)捷.因此,,我們?cè)谟?jì)算中,,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,,就能比較簡(jiǎn)捷地得到答案.
課堂練習(xí)
1.口答下列各題:
(l)(-a+b)(a+b); (2)(a-b)(b+a);
(3)(-a-b)(-a+b); (4)(a-b)(-a-b).
2.計(jì)算下列各題:
(1)(4x-5y)(4x+5y); (2)(-2x2+5)(-2x2-5);
教師巡視學(xué)生練習(xí)情況,,請(qǐng)不同解法的學(xué)生,,或發(fā)生錯(cuò)誤的學(xué)生板演,教師和學(xué)生一起分析解法.
1.什么是平方差公式?
2.運(yùn)用公式要注意什么?
(1)要符合公式特征才能運(yùn)用平方差公式;
(2)有些式子表面不能應(yīng)用公式,,但實(shí)質(zhì)能應(yīng)用公式,,要注意變形.
1.運(yùn)用平方差公式計(jì)算:
(l)(x+2y)(x-2y); (2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x); (4)(-2b-5)(2b-5);
(5)(2x3+15)(2x3-15); (6)(0.3x-0.l)(0.3x+l);
2.計(jì)算:
(1)(x+y)(x-y)+(2x+y)(2x+y); (2)(2a-b)(2a+b)-(2b-3a)(3a+2b);
(3)x(x-3)-(x+7)(x-7); (4)(2x-5)(x-2)+(3x-4)(3x+4).
初中數(shù)學(xué)平方差公式教學(xué)設(shè)計(jì) 初中平方差公式教學(xué)設(shè)計(jì)篇三
教學(xué)目標(biāo)
1.使學(xué)生理解和掌握平方差公式,并會(huì)用公式進(jìn)行計(jì)算;
2.注意培養(yǎng)學(xué)生分析,、綜合和抽象,、概括以及運(yùn)算能力.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):平方差公式的應(yīng)用.
難點(diǎn):用公式的結(jié)構(gòu)特征判斷題目能否使用公式.
教學(xué)過(guò)程設(shè)計(jì)
我們已經(jīng)學(xué)過(guò)了多項(xiàng)式的乘法,兩個(gè)二項(xiàng)式相乘,,在合并同類項(xiàng)前應(yīng)該有幾項(xiàng)?合并同類項(xiàng)以后,,積可能會(huì)是三項(xiàng)嗎?積可能是二項(xiàng)嗎?請(qǐng)舉出例子.
讓學(xué)生動(dòng)腦、動(dòng)筆進(jìn)行探討,,并發(fā)表自己的見(jiàn)解.教師根據(jù)學(xué)生的回答,,引導(dǎo)學(xué)生進(jìn)一步思考:
兩個(gè)二項(xiàng)式相乘,乘式具備什么特征時(shí),,積才會(huì)是二項(xiàng)式?為什么具備這些特點(diǎn)的兩個(gè)二項(xiàng)式相乘,,積會(huì)是兩項(xiàng)呢?而它們的積又有什么特征?
(當(dāng)乘式是兩個(gè)數(shù)之和以及這兩個(gè)數(shù)之差相乘時(shí),積是二項(xiàng)式.這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,,積的四項(xiàng)中,,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,,于是就剩下兩項(xiàng)了.而它們的積等于乘式中這兩個(gè)數(shù)的平方差)
繼而指出,,在多項(xiàng)式的乘法中,對(duì)于某些特殊形式的多項(xiàng)式相乘,,我們把它寫成公式,,并加以熟記,以便遇到類似形式的多項(xiàng)式相乘時(shí)就可以直接運(yùn)用公式進(jìn)行計(jì)算.以后經(jīng)常遇到(a+b)(a-b)這種乘法,,所以把(a+b)(a-b)=a2-b2作為公式,,叫做乘法的平方差公式.
在此基礎(chǔ)上,讓學(xué)生用語(yǔ)言敘述公式.
例1 計(jì)算(1+2x)(1-2x).
解:(1+2x)(1-2x)
=12-(2x)2
=1-4x2.
教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,,并讓學(xué)生說(shuō)出本題中a,,b分別表示什么.
例2 計(jì)算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)
=(2a3+b2)(2a3-b2)
=(2a3)2-(b2)2
=4a6-b4.
教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項(xiàng)交換位置,,就可用平方差公式進(jìn)行計(jì)算.
課堂練習(xí)
運(yùn)用平方差公式計(jì)算:
(l)(x+a)(x-a); (2)(m+n)(m-n);
(3)(a+3b)(a-3b); (4)(1-5y)(l+5y).
例3 計(jì)算(-4a-1)(-4a+1).
讓學(xué)生在練習(xí)本上計(jì)算,,教師巡視學(xué)生解題情況,讓采用不同解法的兩個(gè)學(xué)生進(jìn)行板演.
解法1:(-4a-1)(-4a+1)
=[-(4a+l)][-(4a-l)]
=(4a+1)(4a-l)
=(4a)2-l2
=16a2-1.
解法2:(-4a-l)(-4a+l)
=(-4a)2-l
=16a2-1.
根據(jù)學(xué)生板演,,教師指出兩種解法都很正確,,解法1先用了提出負(fù)號(hào)的辦法,使兩乘式首項(xiàng)都變成正的,,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,,應(yīng)用平方差公式,,寫出結(jié)果.解法2把-4a看成一個(gè)數(shù),把1看成另一個(gè)數(shù),,直接寫出(-4a)2-l2后得出結(jié)果.采用解法2的同學(xué)比較注意平方差公式的特征,,能看到問(wèn)題的本質(zhì),運(yùn)算簡(jiǎn)捷.因此,,我們?cè)谟?jì)算中,,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,,就能比較簡(jiǎn)捷地得到答案.
課堂練習(xí)
1.口答下列各題:
(l)(-a+b)(a+b); (2)(a-b)(b+a);
(3)(-a-b)(-a+b); (4)(a-b)(-a-b).
2.計(jì)算下列各題:
(1)(4x-5y)(4x+5y); (2)(-2x2+5)(-2x2-5);
教師巡視學(xué)生練習(xí)情況,,請(qǐng)不同解法的學(xué)生,或發(fā)生錯(cuò)誤的學(xué)生板演,,教師和學(xué)生一起分析解法.
1.什么是平方差公式?
2.運(yùn)用公式要注意什么?
(1)要符合公式特征才能運(yùn)用平方差公式;
(2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,,要注意變形.
1.運(yùn)用平方差公式計(jì)算:
(l)(x+2y)(x-2y); (2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x); (4)(-2b-5)(2b-5);
(5)(2x3+15)(2x3-15); (6)(0.3x-0.l)(0.3x+l);