總結(jié)是對(duì)過去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧,、分析,并做出客觀評(píng)價(jià)的書面材料,,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運(yùn)用這些規(guī)律,,是時(shí)候?qū)懸环菘偨Y(jié)了,。什么樣的總結(jié)才是有效的呢?下面是小編整理的個(gè)人今后的總結(jié)范文,,歡迎閱讀分享,,希望對(duì)大家有所幫助。
初中中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇一
(1)三角形中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線,。
(2)梯形中位線定義:連接梯形兩腰中點(diǎn)的線段叫做梯形的中位線,。
注意(1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連接一頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段,,而三角形中位線是連接三角形兩邊中點(diǎn)的線段,。
(2)梯形的中位線是連接兩腰中點(diǎn)的線段而不是連結(jié)兩底中點(diǎn)的線段。
(3)兩個(gè)中位線定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,,這時(shí)三角形的中位線就變成梯形的中位線,。
(1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.
(2)梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半.
三角形有三條中位線,,首尾相接時(shí),,每個(gè)小三角形面積都等于原三角形的四分之一,這四個(gè)三角形都互相全等,。
初中中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇二
一,、三角形的有關(guān)概念
1.三角形:由不在同一直線上的三條線段首尾順次相接組成的圖形叫三角形。
三角形的特征:①不在同一直線上;②三條線段;③首尾順次相接;④三角形具有穩(wěn)定性,。
2.三角形中的三條重要線段:角平分線,、中線、高
(1)角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線,。
(2)中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線,。
(3)高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,,頂點(diǎn)和垂足間的線段叫做三角形的高。
說明:①三角形的角平分線,、中線,、高都是線段;②三角形的角平分線、中線都在三角形內(nèi)部且都交于一點(diǎn);三角形的高可能在三角形的內(nèi)部(銳角三角形),、外部(鈍角三角形),,也可能在邊上(直角三角形),它們(或延長線)相交于一點(diǎn)。
二,、等腰三角形的性質(zhì)和判定
(1)性質(zhì)
1.等腰三角形的兩個(gè)底角相等(簡寫成"等邊對(duì)等角"),。
2.等腰三角形的頂角的平分線,底邊上的中線,,底邊上的高重合(簡寫成"等腰三角形的三線合一"),。
3.等腰三角形的兩底角的平分線相等(兩條腰上的中線相等,兩條腰上的高相等),。
4.等腰三角形底邊上的垂直平分線到兩條腰的距離相等,。
5.等腰三角形的一腰上的高與底邊的夾角等于頂角的一半。
6.等腰三角形底邊上任意一點(diǎn)到兩腰距離之和等于一腰上的高(需用等面積法證明),。
7.等腰三角形是軸對(duì)稱圖形,,只有一條對(duì)稱軸,頂角平分線所在的直線是它的對(duì)稱軸,,等邊三角形有三條對(duì)稱軸,。
(2)判定
在同一三角形中,有兩條邊相等的三角形是等腰三角形(定義),。
在同一三角形中,,有兩個(gè)角相等的三角形是等腰三角形(簡稱:等角對(duì)等邊)。
三,、直角三角形和勾股定理
有一個(gè)角是直角的三角形是直角三角形,,在直角三角形中,斜邊中線等于斜邊的一半;30度所對(duì)的直角邊等于斜邊的一半;直角三角形常用面積法求斜邊上的高,。
勾股定理:直角三角形兩直角邊a,,b的平方和等于斜邊c的平方,即a2+b2=c2,。
勾股數(shù)一定是正整數(shù),,常見勾股數(shù):3,4,5;5,12,13;6,8,10,;7,24,25;8,15,17;9,12,15。
方法總結(jié):
當(dāng)不明確直角三角形的斜邊長,,應(yīng)把已知最長邊分為直角邊和斜邊兩種情況討論,。無理數(shù)在數(shù)軸上的表示和線段長表示通常用到勾股定理。翻折題型常用勾股定理(口訣:翻折求邊找直角,,勾股定理設(shè)未知量)
如果三角形的三邊長a,,b,c有關(guān)系a2+b2=c2,,那么這個(gè)三角形是直角三角形,。勾股定理的逆定理,常用于判斷三角形的形狀,,先確定最大邊(可以設(shè)為c),。
四、初中三角形中線定理
中線定理又稱阿波羅尼奧斯定理,是歐氏幾何的定理,,表述三角形三邊和中線長度關(guān)系。
定理內(nèi)容:三角形一條中線兩側(cè)所對(duì)邊平方和等于底邊的一半平方與該邊中線平方和的2倍,。
中線的定義:任何三角形都有三條中線,,而且這三條中線都在三角形的內(nèi)部,并交于一點(diǎn),。
由定義可知,,三角形的中線是一條線段。
由于三角形有三條邊,,所以一個(gè)三角形有三條中線,。
且三條中線交于一點(diǎn)。這點(diǎn)稱為三角形的重心,。
每條三角形中線分得的兩個(gè)三角形面積相等,。
五、直角三角形的判定
判定1:有一個(gè)角為90°的三角形是直角三角形,。
判定2:若a的平方+b的平方=c的平方,,則以a、b,、c為邊的三角形是以c為斜邊的直角三角形(勾股定理的逆定理),。
判定3:若一個(gè)三角形30°內(nèi)角所對(duì)的邊是某一邊的一半,那么這個(gè)三角形是以這條長邊為斜邊的直角三角形,。
判定4:兩個(gè)銳角互余的三角形是直角三角形,。
判定5:證明直角三角形全等時(shí)可以利用hl,兩個(gè)三角形的斜邊長對(duì)應(yīng)相等,,以及一個(gè)直角邊對(duì)應(yīng)相等,,則兩直角三角形全等。[定理:斜邊和一條直角對(duì)應(yīng)相等的兩個(gè)直角三角形全等,。簡稱為hl]
判定6:若兩直線相交且它們的斜率之積互為負(fù)倒數(shù),,則這兩直線垂直。
判定7:在一個(gè)三角形中若它一邊上的中線等于這條中線所在邊的一半,,那么這個(gè)三角形為直角三角形,。
六、勾股定理的逆定理
如果三角形三邊長a,,b,,c滿足,那么這個(gè)三角形是直角三角形,,其中c為斜邊,。
①勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運(yùn)用這一定理時(shí),,可用兩小邊的平方和與較長邊的平方作比較,,若它們相等時(shí),以a,,b,,c為三邊的三角形是直角三角形;若時(shí),以a,,b,,c為三邊的三角形是鈍角三角形;若時(shí),以a,,b,,c為三邊的三角形是銳角三角形;
②定理中a,b,,c及只是一種表現(xiàn)形式,,不可認(rèn)為是唯一的,如若三角形三邊長a,,b,,c滿足,那么以a,,b,c為三邊的三角形是直角三角形,,但是b為斜邊.
③勾股定理的逆定理在用問題描述時(shí),不能說成:當(dāng)斜邊的平方等于兩條直角邊的平方和時(shí),,這個(gè)三角形是直角三角形,。
七,、三角形定理公式
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,,兩邊之差小于第三邊,。
三角形的內(nèi)角和定理:三角形的三個(gè)內(nèi)角的和等于180度。
三角形的外角和定理:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)的和,。
三角形的外角和定理推理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。
三角形的三條角平分線交于一點(diǎn)(內(nèi)心),。
三角形的三邊的垂直平分線交于一點(diǎn)(外心)。
三角形中位線定理:三角形兩邊中點(diǎn)的連線平行于第三邊,,并且等于第三邊的一半,。
初中中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇三
在代數(shù)式中,,若只含有乘法(包括乘方)運(yùn)算?;螂m含有除法運(yùn)算,,但除式中不含字母的一類代數(shù)式叫單項(xiàng)式;數(shù)字或字母的乘積叫單項(xiàng)式(單獨(dú)的一個(gè)數(shù)字或字母也是單項(xiàng)式)。
單項(xiàng)式中的數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù),。所有字母的指數(shù)之和叫做這個(gè)單項(xiàng)式的次數(shù),。任何一個(gè)非零數(shù)的零次方等于1.
:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,。
多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),,每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù),。
:不含字母的項(xiàng)叫做常數(shù)項(xiàng),。
(1)把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從大到小的順序排列起來,叫做把多項(xiàng)式按這個(gè)字母降冪排列,。
(2)把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從小到大的順序排列起來,叫做把多項(xiàng)式按這個(gè)字母升冪排列,。
(1)由于單項(xiàng)式的項(xiàng),,包括它前面的性質(zhì)符號(hào),,因此在排列時(shí),,仍需把每一項(xiàng)的性質(zhì)符號(hào)看作是這一項(xiàng)的一部分,,一起移動(dòng)。
(2)有兩個(gè)或兩個(gè)以上字母的多項(xiàng)式,,排列時(shí),,要注意:
a.先確認(rèn)按照哪個(gè)字母的指數(shù)來排列,。
b.確定按這個(gè)字母向里排列,,還是向外排列,。
(3)整式:
單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式,。
多項(xiàng)式的加法,,是指多項(xiàng)式的同類項(xiàng)的系數(shù)相加(即合并同類項(xiàng)),。
所含字母相同,,并且相同字母的次數(shù)也分別相同的項(xiàng)叫做同類項(xiàng),。
多項(xiàng)式中的同類項(xiàng)可以合并,叫做合并同類項(xiàng),,合并同類項(xiàng)的法則是:同類項(xiàng)的系數(shù)相加,,所得的結(jié)果作為系數(shù),字母與字母的指數(shù)不變,。
(1)判斷幾個(gè)單項(xiàng)式或項(xiàng),是否是同類項(xiàng),,就要掌握兩個(gè)條件:
①所含字母相同,。
②相同字母的次數(shù)也相同,。
(2)同類項(xiàng)與系數(shù)無關(guān),,與字母排列的順序也無關(guān),。
(3)所有常數(shù)項(xiàng)都是同類項(xiàng),。
(1)準(zhǔn)確的找出同類項(xiàng);
(2)逆用分配律,,把同類項(xiàng)的系數(shù)加在一起(用小括號(hào)),字母和字母的指數(shù)不變;
(3)寫出合并后的結(jié)果,。
(1)如果兩個(gè)同類項(xiàng)的系數(shù)互為相反數(shù),,合并同類項(xiàng)后,,結(jié)果為0;
(2)不要漏掉不能合并的項(xiàng);
(3)只要不再有同類項(xiàng),,就是結(jié)果(可能是單項(xiàng)式,,也可能是多項(xiàng)式)。
整式的乘除:重點(diǎn)是整式的乘除,,尤其是其中的乘法公式。乘法公式的結(jié)構(gòu)特征以及公式中的字母的廣泛含義,,學(xué)生不易掌握.因此,,乘法公式的靈活運(yùn)用是難點(diǎn),,添括號(hào)(或去括號(hào))時(shí),,括號(hào)中符號(hào)的處理是另一個(gè)難點(diǎn),。添括號(hào)(或去括號(hào))是對(duì)多項(xiàng)式的變形,,要根據(jù)添括號(hào)(或去括號(hào))的法則進(jìn)行,。在整式的乘除中,,單項(xiàng)式的乘除是關(guān)鍵,這是因?yàn)?,一般多?xiàng)式的乘除都要“轉(zhuǎn)化”為單項(xiàng)式的乘除,。
(1)單項(xiàng)式的四則運(yùn)算
此類題目多以選擇題和應(yīng)用題的形式出現(xiàn),其特點(diǎn)是考查單項(xiàng)式的四則運(yùn)算,。
(2)單項(xiàng)式與多項(xiàng)式的運(yùn)算
初中中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇四
考核要求:
〔 1〕理解必然事件,、不可能事件,、隨機(jī)事件的概念,知道確定事件與必然事件,、不可能事件的關(guān)系,;
〔 2〕能區(qū)分簡單生活事件中的必然事件,、不可能事件、隨機(jī)事件,。
考核要求:
〔 1〕知道各種事件發(fā)生的可能性大小不同,能判斷一些隨機(jī)事件發(fā)生的可能事件的大小并排出大小順序,;
〔 2〕知道概率的含義和表示符號(hào),了解必然事件,、不可能事件的概率和隨機(jī)事件概率的取值范圍;
〔3〕理解隨機(jī)事件發(fā)生的頻率之間的區(qū)別和聯(lián)系,,會(huì)根據(jù)大數(shù)次試驗(yàn)所得頻率估計(jì)事件的概率,。
〔1〕在給可能性的大小排序前可先用〝一定發(fā)生〞,、〝很有可能發(fā)生〞、 〝可能發(fā)生〞,、〝不太可能發(fā)生〞、〝一定不會(huì)發(fā)生〞等詞語來表述事件發(fā)生的可能性的大??;
〔 2〕事件的概率是確定的常數(shù),,而概率是不確定的,,可是近似值,,與試驗(yàn)的次數(shù)的多少有關(guān),只有當(dāng)試驗(yàn)次數(shù)足夠大時(shí)才能更精確,。
考核要求
〔1〕理解等可能試驗(yàn)的概念,會(huì)用等可能試驗(yàn)中事件概率計(jì)算公式來計(jì)算簡單事件的概率,;
〔2〕會(huì)用枚舉法或畫〝樹形圖〞方法求等可能事件的概率,會(huì)用區(qū)域面積之比解決簡單的概率問題,;
〔3〕形成對(duì)概率的初步認(rèn)識(shí),,了解機(jī)會(huì)與風(fēng)險(xiǎn)、規(guī)那么公平性與決策合理性等簡單概率問題,。
〔1〕計(jì)算前要先確定是否為可能事件;
〔2〕用枚舉法或畫〝樹形圖〞方法求等可能事件的概率過程中要將所有等可能情況考慮完整,。
考核要求:
〔1〕知道數(shù)據(jù)整理分析的意義,,知道普查和抽樣調(diào)查這兩種收集數(shù)據(jù)的方法及其區(qū)別,;
〔2〕結(jié)合有關(guān)代數(shù),、幾何的內(nèi)容,,掌握用折線圖、扇形圖、條形圖等整理數(shù)據(jù)的方法,,并能通過圖表獲取有關(guān)信息。
考核要求:
〔1〕知道統(tǒng)計(jì)的意義和一般研究過程,;
〔2〕認(rèn)識(shí)個(gè)體,、總體和樣本的區(qū)別,,了解樣本估計(jì)總體的思想方法。
考核要求:
〔1〕理解平均數(shù),、加權(quán)平均數(shù)的概念;
〔2〕掌握平均數(shù),、加權(quán)平均數(shù)的'計(jì)算公式。注意:在計(jì)算平均數(shù),、加權(quán)平均數(shù)時(shí)要防止數(shù)據(jù)漏抄、重抄,、錯(cuò)抄等錯(cuò)誤現(xiàn)象,提高運(yùn)算準(zhǔn)確率,。
考核要求:
〔 1〕知道中位數(shù)、眾數(shù),、方差,、標(biāo)準(zhǔn)差的概念,;
〔 2〕會(huì)求一組數(shù)據(jù)的中位數(shù),、眾數(shù)、方差,、標(biāo)準(zhǔn)差,,并能用于解決簡單的統(tǒng)計(jì)問題,。
〔1〕當(dāng)一組數(shù)據(jù)中出現(xiàn)極值時(shí),,中位數(shù)比平均數(shù)更能反映這組數(shù)據(jù)的平均水平,;
〔2〕求中位數(shù)之前必須先將數(shù)據(jù)排序,。
〔 1〕理解頻數(shù),、頻率的概念,,掌握頻數(shù),、頻率和總量三者之間的關(guān)系式,;
〔2〕會(huì)畫頻數(shù)分布直方圖和頻率分布直方圖,,并能用于解決有關(guān)的實(shí)際問題,。解題時(shí)要注意:頻數(shù),、頻率能反映每個(gè)對(duì)象出現(xiàn)的頻繁程度,,但也存在差別:在同一個(gè)問題中,,頻數(shù)反映的是對(duì)象出現(xiàn)頻繁程度的絕對(duì)數(shù)據(jù),,所有頻數(shù)之和是試驗(yàn)的總次數(shù),;頻率反映的是對(duì)象頻繁出現(xiàn)的相對(duì)數(shù)據(jù),,所有的頻率之和是1,。
〔1〕了解基本統(tǒng)計(jì)量〔平均數(shù)、眾數(shù)、中位數(shù),、方差,、標(biāo)準(zhǔn)差,、頻數(shù),、頻率〕的意計(jì)算及其應(yīng)用,,并掌握其概念和計(jì)算方法,;
〔2〕正確理解樣本數(shù)據(jù)的特征和數(shù)據(jù)的代表,能根據(jù)計(jì)算結(jié)果作出判斷和預(yù)測,;
〔3〕能將多個(gè)圖表結(jié)合起來,,綜合處理圖表提供的數(shù)據(jù),,會(huì)利用各種統(tǒng)計(jì)量來進(jìn)行推理和分析,,
要練說,,得練看,。看與說是統(tǒng)一的,,看不準(zhǔn)就難以說得好,。練看,,就是訓(xùn)練幼兒的觀察能力,,擴(kuò)大幼兒的認(rèn)知范圍,讓幼兒在觀察事物,、觀察生活、觀察自然的活動(dòng)中,,積累詞匯,、理解詞義,、發(fā)展語言,。在運(yùn)用觀察法組織活動(dòng)時(shí),我著眼觀察于觀察對(duì)象的選擇,,著力于觀察過程的指導(dǎo),,著重于幼兒觀察能力和語言表達(dá)能力的提高,。
單靠〝死〞記還不行,還得〝活〞用,姑且稱之為〝先死后活〞吧,。讓學(xué)生把一周看到或聽到的新鮮事記下來,摒棄那些假話套話空話,寫出自己的真情實(shí)感,篇幅可長可短,并要求運(yùn)用積累的成語,、名言警句等,定期檢查點(diǎn)評(píng),選擇優(yōu)秀篇目在班里朗讀或展出,。這樣,即鞏固了所學(xué)的材料,又鍛煉了學(xué)生的寫作能力,同時(shí)還培養(yǎng)了學(xué)生的觀察能力、思維能力等等,達(dá)到〝一石多鳥〞的效果。研究解決有關(guān)的實(shí)際生活中問題,,然后作出合理的解決。
一般說來,,〝教師〞概念之形成經(jīng)歷了十分漫長的歷史。楊士勛〔唐初學(xué)者,,四門博士〕 ?春秋谷梁傳疏?曰:〝師者教人以不及,故謂師為師資也〞,。
這兒的〝師資〞,其實(shí)就是先秦而后歷代對(duì)教師的別稱之一,。
韓非子也有云:“今有不才之子?…師長教之弗為變〃其“師長〃當(dāng)然也指教師。這兒的〝師資〞和〝師長〞可稱為〝教師〞概念的雛形,,但仍說不上是名副其實(shí)的〝教師〞,,因?yàn)楱斀處煥暠仨氁忻鞔_的傳授知識(shí)的對(duì)象和本身明確的職責(zé),。
初中中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇五
用符號(hào)〉,,=,〈號(hào)連接的式子叫不等式,。
①不等式的兩邊都加上或減去同一個(gè)整式,,不等號(hào)方向不變,。
②不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變,。
③不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反,。
①一元一次不等式:左右兩邊都是整式,,只含有一個(gè)未知數(shù),,且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
②一元一次不等式組:
a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,,就組成了一元一次不等式組,。
b.一元一次不等式組中各個(gè)不等式的解集的公共部分,,叫做這個(gè)一元一次不等式組的解集,。
①解一元一次不等式(組)
②根據(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡單實(shí)際問題
③用數(shù)軸表示一元一次不等式(組)的解集
初中中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇六
函數(shù)
①位置的確定與平面直角坐標(biāo)系
位置的確定
坐標(biāo)變換
平面直角坐標(biāo)系內(nèi)點(diǎn)的特征
平面直角坐標(biāo)系內(nèi)點(diǎn)坐標(biāo)的符號(hào)與點(diǎn)的象限位置
對(duì)稱問題:p(x,y)→q(x,- y)關(guān)于x軸對(duì)稱p(x,y)→q(- x,y)關(guān)于y軸對(duì)稱p(x,y)→q(- x,-y)關(guān)于原點(diǎn)對(duì)稱
變量、自變量,、因變量,、函數(shù)的定義
函數(shù)自變量,、因變量的取值范圍(使式子有意義的條件,、圖象法) 56,、函數(shù)的圖象:變量的變化趨勢描述
②一次函數(shù)與正比例函數(shù)
一次函數(shù)的定義與正比例函數(shù)的定義
一次函數(shù)的圖象:直線,畫法
一次函數(shù)的性質(zhì)(增減性)
一次函數(shù)y=kx+b(k≠0)中k,、b符號(hào)與圖象位置
待定系數(shù)法求一次函數(shù)的解析式(一設(shè)二列三解四回)
一次函數(shù)的平移問題
一次函數(shù)與一元一次方程,、一元一次不等式、二元一次方程的關(guān)系(圖象法)
一次函數(shù)的實(shí)際應(yīng)用
一次函數(shù)的綜合應(yīng)用(1)一次函數(shù)與方程綜合(2)一次函數(shù)與其它函數(shù)綜合(3)一次函數(shù)與不等式的綜合(4)一次函數(shù)與幾何綜合
初中中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇七
1.平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,,定長稱為半徑。
2.圓上任意兩點(diǎn)間的部分叫做圓弧,,簡稱弧,。大于半圓的弧稱為優(yōu)弧,,小于半圓的弧稱為劣弧,。連接圓上任意兩點(diǎn)的線段叫做弦,。經(jīng)過圓心的弦叫做直徑,。
3.頂點(diǎn)在圓心上的角叫做圓心角,。頂點(diǎn)在圓周上,,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角,。
4.過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心,。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心,。
5.直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。
6.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交,。兩圓圓心之間的距離叫做圓心距,。
7.在圓上,,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個(gè)扇形,。這個(gè)扇形的半徑成為圓錐的母線,。
圓--⊙ 半徑r 弧--⌒ 直徑d
扇形弧長/圓錐母線l 周長c 面積s三,、有關(guān)圓的基本性質(zhì)與定理(27個(gè))
1.點(diǎn)p與圓o的位置關(guān)系(設(shè)p是一點(diǎn),,則po是點(diǎn)到圓心的距離):
p在⊙o外,,pop在⊙o上,,po=r;p在⊙o內(nèi),,po
2.圓是軸對(duì)稱圖形,,其對(duì)稱軸是任意一條過圓心的直線,。圓也是中心對(duì)稱圖形,,其對(duì)稱中心是圓心,。
3.垂徑定理:垂直于弦的直徑平分這條弦,,并且平分弦所對(duì)的弧,。逆定理:平分弦(不是直徑)的直徑垂直于弦,,并且平分弦所對(duì)的弧,。
4.在同圓或等圓中,,如果2個(gè)圓心角,,2個(gè)圓周角,2條弧,,2條弦中有一組量相等,,那么他們所對(duì)應(yīng)的其余各組量都分別相等,。
5.一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半,。
6.直徑所對(duì)的圓周角是直角,。90度的圓周角所對(duì)的弦是直徑,。
7.不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓,。
8.一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓,。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),,到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),,到三角形3邊距離相等,。
9.直線ab與圓o的位置關(guān)系(設(shè)opab于p,,則po是ab到圓心的距離):
ab與⊙o相離,,poab與⊙o相切,,po=r;ab與⊙o相交,,po
10.圓的切線垂直于過切點(diǎn)的直徑;經(jīng)過直徑的一端,,并且垂直于這條直徑的直線,,是這個(gè)圓的切線,。
11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為r和r,,且rr,,圓心距為p):
外離p外切p=r+r;相交r-r
1.圓的周長c=2d 2.圓的面積s=s=3.扇形弧長l=nr/180
4.扇形面積s=n/360=rl/2 5.圓錐側(cè)面積s=rl
1.圓的標(biāo)準(zhǔn)方程
在平面直角坐標(biāo)系中,以點(diǎn)o(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是
(x-a)^2+(y-b)^2=r^2
2.圓的一般方程
把圓的標(biāo)準(zhǔn)方程展開,移項(xiàng),合并同類項(xiàng)后,可得圓的一般方程是
x^2+y^2+dx+ey+f=0
和標(biāo)準(zhǔn)方程對(duì)比,其實(shí)d=-2a,e=-2b,f=a^2+b^2
相關(guān)知識(shí):圓的離心率e=0.在圓上任意一點(diǎn)的曲率半徑都是r.
鏈接:圓與直線的位置關(guān)系(一.5)
平面內(nèi),直線ax+by+c=o與圓x^2+y^2+dx+ey+f=0的位置關(guān)系判斷一般方法是
討論如下2種情況:
(1)由ax+by+c=o可得y=(-c-ax)/b,[其中b不等于0],
代入x^2+y^2+dx+ey+f=0,即成為一個(gè)關(guān)于x的一元二次方程f(x)=0.
利用判別式b^2-4ac的符號(hào)可確定圓與直線的位置關(guān)系如下:
如果b^2-4ac0,則圓與直線有2交點(diǎn),即圓與直線相交
如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切
如果b^2-4ac0,則圓與直線有0交點(diǎn),即圓與直線相離
(2)如果b=0即直線為ax+c=0,即x=-c/a.它平行于y軸(或垂直于x軸)
將x^2+y^2+dx+ey+f=0化為(x-a)^2+(y-b)^2=r^2
令y=b,求出此時(shí)的兩個(gè)x值x1,x2,并且我們規(guī)定x1
當(dāng)x=-c/ax2時(shí),直線與圓相離
當(dāng)x1
當(dāng)x=-c/a=x1或x=-c/a=x2時(shí),直線與圓相切
1不在同一直線上的三點(diǎn)確定一個(gè)圓,。
2垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1
①平分弦(不是直徑)的直徑垂直于弦,,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線經(jīng)過圓心,,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,,垂直平分弦,,并且平分弦所對(duì)的另一條弧
推論2
1圓的兩條平行弦所夾的弧相等
3圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
5圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
希望這篇20xx中考數(shù)學(xué)知識(shí)點(diǎn)匯總,,可以幫助更好的迎接即將到來的考試!
初中中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇八
倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關(guān)系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
構(gòu)造以"上弦,、中切,、下割;左正,、右余,、中間1"的正六邊形為模型,。
倒數(shù)關(guān)系
對(duì)角線上兩個(gè)函數(shù)互為倒數(shù);
商數(shù)關(guān)系
六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積,。(主要是兩條虛線兩端的三角函數(shù)值的乘積,,下面4個(gè)也存在這種關(guān)系,。)。由此,,可得商數(shù)關(guān)系式,。
平方關(guān)系
在帶有陰影線的三角形中,,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方,。
銳角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),,余割(csc)都叫做角a的銳角三角函數(shù),。
正弦(sin)等于對(duì)邊比斜邊;sina=a/c
余弦(cos)等于鄰邊比斜邊;cosa=b/c
正切(tan)等于對(duì)邊比鄰邊;tana=a/b
余切(cot)等于鄰邊比對(duì)邊;cota=b/a
正割(sec)等于斜邊比鄰邊;seca=c/b
余割(csc)等于斜邊比對(duì)邊,。csca=c/a
互余角的三角函數(shù)間的關(guān)系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方關(guān)系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關(guān)系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
1、反比例函數(shù)的概念
一般地,,函數(shù)(k是常數(shù),,k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式,。自變量x的取值范圍是x0的一切實(shí)數(shù),,函數(shù)的取值范圍也是一切非零實(shí)數(shù),。
2,、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線,,它有兩個(gè)分支,,這兩個(gè)分支分別位于第一,、三象限,,或第二,、四象限,,它們關(guān)于原點(diǎn)對(duì)稱,。由于反比例函數(shù)中自變量x0,函數(shù)y0,,所以,它的圖像與x軸,、y軸都沒有交點(diǎn),即雙曲線的兩個(gè)分支無限接近坐標(biāo)軸,,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。
3,、反比例函數(shù)的性質(zhì)
反比例函數(shù)k的符號(hào)k>0k<0圖像yo xyo x性質(zhì)①x的取值范圍是x0,,
y的取值范圍是y0;
②當(dāng)k>0時(shí),,函數(shù)圖像的兩個(gè)分支分別
在第一,、三象限。在每個(gè)象限內(nèi),,y
隨x 的增大而減小,。
①x的取值范圍是x0,,
y的取值范圍是y0;
②當(dāng)k<0時(shí),,函數(shù)圖像的兩個(gè)分支分別
在第二、四象限,。在每個(gè)象限內(nèi),y
隨x 的增大而增大,。
4,、反比例函數(shù)解析式的確定
確定及誒是的方法仍是待定系數(shù)法,。由于在反比例函數(shù)中,,只有一個(gè)待定系數(shù),,因此只需要一對(duì)對(duì)應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),,即可求出k的值,,從而確定其解析式,。
5,、反比例函數(shù)的幾何意義
設(shè)是反比例函數(shù)圖象上任一點(diǎn),,過點(diǎn)p作軸,、軸的垂線,,垂足為a,,則
(1)△opa的面積.
(2)矩形oapb的面積,。這就是系數(shù)的幾何意義.并且無論p怎樣移動(dòng),,△opa的面積和矩形oapb的面積都保持不變,。
矩形pcef面積=,,平行四邊形pdea面積=
初中中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇九
(1)凡能寫成 形式的數(shù),,都是有理數(shù).正整數(shù)、0,、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),,也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類: ① 整數(shù) ②分?jǐn)?shù)
(3)注意:有理數(shù)中,,1、0,、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,,這四個(gè)區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù) 0和正整數(shù);a0 a是正數(shù);a0 a是負(fù)數(shù);
a≥0 a是正數(shù)或0 a是非負(fù)數(shù);a≤ 0 ? a是負(fù)數(shù)或0 a是非正數(shù).
(1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;
(2)正數(shù)永遠(yuǎn)比0大,,負(fù)數(shù)永遠(yuǎn)比0小;
(3)正數(shù)大于一切負(fù)數(shù);
(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;
(5)數(shù)軸上的兩個(gè)數(shù),,右邊的數(shù)總比左邊的數(shù)大;
(6)大數(shù)-小數(shù) 0,,小數(shù)-大數(shù) 0.
初中中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇十
有理數(shù):
(1)凡能寫成形式的數(shù),,都是有理數(shù),,整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).
注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),,+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的分類:①②
(3)注意:有理數(shù)中,1,、0,、-1是三個(gè)特殊的數(shù),,它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,,這四個(gè)區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);
a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).
初中中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇十一
一,、 重要概念
1。數(shù)的分類及概念
數(shù)系表:
說明:“分類”的原則:1)相稱(不重,、不漏)
2)有標(biāo)準(zhǔn)
2。非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱,。(表為:x≥0)
常見的非負(fù)數(shù)有:
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0,。
3。倒數(shù): ①定義及表示法
②性質(zhì):a.a≠1/a(a≠±1);b.1/a中,,a≠0;c.01;a1時(shí),1/a1;d,。積為1。
4,。相反數(shù): ①定義及表示法
②性質(zhì):a.a≠0時(shí),,a≠-a;b.a與-a在數(shù)軸上的位置;c。和為0,商為-1,。
5。數(shù)軸:①定義(“三要素”)
②作用:a,。直觀地比較實(shí)數(shù)的大小;b。明確體現(xiàn)絕對(duì)值意義;c,。建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
6,。奇數(shù)、偶數(shù),、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7,。絕對(duì)值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。
②│a│≥0,符號(hào)“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類型的題目,,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號(hào),。
初中中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇十二
1.如果把解題比做打仗,那么解題者的“兵器”就是數(shù)學(xué)基礎(chǔ)知識(shí),,“兵力”就是數(shù)學(xué)基本方法,而調(diào)動(dòng)數(shù)學(xué)基礎(chǔ)知識(shí),、運(yùn)用數(shù)學(xué)思想方法的數(shù)學(xué)解題思想則正是“兵法”。
2.數(shù)學(xué)家存在的主要理由就是解決問題。因此,,數(shù)學(xué)的真正的組成部分是問題和解答,?!皢栴}是數(shù)學(xué)的心臟”,。
3.問題反映了現(xiàn)有水平與客觀需要的矛盾,,對(duì)學(xué)生來說,,就是已知和未知的矛盾,。問題就是矛盾,。對(duì)于學(xué)生而言,,問題有三個(gè)特征:
(1)接受性:學(xué)生愿意解決并且具有解決它的知識(shí)基礎(chǔ)和能力基礎(chǔ),。
(2)障礙性:學(xué)生不能直接看出它的解法和答案,,而必須經(jīng)過思考才能解決。
(3)探究性:學(xué)生不能按照現(xiàn)成的的套路去解,,需要進(jìn)行探索,尋找新的處理方法,。
4.練習(xí)型的問題具有教學(xué)性,,它的結(jié)論為數(shù)學(xué)家或教師所已知,,其之成為問題僅相對(duì)于教學(xué)或?qū)W生而言,,包括一個(gè)待計(jì)算的答案,、一個(gè)待證明的結(jié)論,、一個(gè)待作出的圖形,、一個(gè)待判斷的命題,、一個(gè)待解決的實(shí)際問題,。
5.“問題解決”有不同的解釋,,比較典型的觀點(diǎn)可歸納為4種:
(1)問題解決是心理活動(dòng),。面臨新情境,、新課題,,發(fā)現(xiàn)它與主客觀需要的矛盾而自己卻沒有現(xiàn)成對(duì)策時(shí),,所引起的尋求處理辦法的一種活動(dòng),。
(2)問題解決是一個(gè)探究過程。把“問題解決”定義為“將先前已獲得的知識(shí)用于新的,、不熟悉的情境的過程”。這就是說,,問題解決是一個(gè)發(fā)現(xiàn)的過程、探索的過程,、創(chuàng)新的過程,。
(3)問題解決是一個(gè)學(xué)習(xí)目的,。“學(xué)習(xí)數(shù)學(xué)的主要目的在于問題解決”,。因而,學(xué)習(xí)怎樣解決問題就成為學(xué)習(xí)數(shù)學(xué)的根本原因,。此時(shí),,問題解決就獨(dú)立于特殊的問題,,獨(dú)立于一般過程或方法,,也獨(dú)立于數(shù)學(xué)的具體內(nèi)容,。
(4)問題解決是一種生存能力,。重視問題解決能力的培養(yǎng),、發(fā)展問題解決的能力,其目的之一是,,在這個(gè)充滿疑問,、有時(shí)連問題和答案都是不確定的世界里,,學(xué)習(xí)生存的本領(lǐng),。
6.解題研究存在一些誤區(qū),,首先一個(gè)表現(xiàn)是,用現(xiàn)成的例子說明現(xiàn)成的觀點(diǎn),,或用現(xiàn)成的觀點(diǎn)解釋現(xiàn)成的例子。其次一個(gè)表現(xiàn)是,,長期徘徊在一招一式的歸類上,缺少觀點(diǎn)上的提高或?qū)嵸|(zhì)性的突破,。第三個(gè)表現(xiàn)是,多研究“怎樣解”,,較少問“為什么這樣解”。在這些誤區(qū)里,,“解題而不立法、作答而不立論”,。
7.人的思維依賴于必要的知識(shí)和經(jīng)驗(yàn),,數(shù)學(xué)知識(shí)正是數(shù)學(xué)解題思維活動(dòng)的出發(fā)點(diǎn)與憑借。豐富的知識(shí)并加以優(yōu)化的結(jié)構(gòu)能為題意的本質(zhì)理解與思路的迅速尋找創(chuàng)造成功的條件,。解題研究的一代宗師波利亞說過:“貨源充足和組織良好的知識(shí)倉庫是一個(gè)解題者的重要資本”,。
8.熟練掌握數(shù)學(xué)基礎(chǔ)知識(shí)的體系,。對(duì)于中學(xué)數(shù)學(xué)解題來說,應(yīng)如數(shù)學(xué)家珍說出教材的概念系統(tǒng),、定理系統(tǒng)、符號(hào)系統(tǒng),。還應(yīng)掌握中學(xué)數(shù)學(xué)競賽涉及的基礎(chǔ)理論,。深刻理解數(shù)學(xué)概念、準(zhǔn)確掌握數(shù)學(xué)定理,、公式和法則。熟悉基本規(guī)則和常用的方法,,不斷積累數(shù)學(xué)技巧,。
9.數(shù)學(xué)的本質(zhì)活動(dòng)是思維。思維的對(duì)象是概念,,思維的方式是邏輯。當(dāng)這種思維與新事物接觸時(shí),,將出現(xiàn)“相容”和“不容”的兩種可能,。出現(xiàn)“相容”時(shí),,產(chǎn)生新結(jié)果,,且被原概念吸收,,并發(fā)展成新概念,;當(dāng)出現(xiàn)“不容”時(shí),,則產(chǎn)生了所謂的問題,。這時(shí),,思維出現(xiàn)迂回,,甚至?xí)簳r(shí)退回原地,將原概念擴(kuò)大或?qū)⒃壿嬜兪?,直到新思維與事物相容為止。至此,,也產(chǎn)生新的結(jié)果,,也被原思維吸收,。這就是一個(gè)思維活動(dòng)的全過程,。
10.解題能力,,表現(xiàn)于發(fā)現(xiàn)問題、分析問題,、解決問題的敏銳、洞察力與整體把握,。其主要成分是3種基本的數(shù)學(xué)能力(運(yùn)算能力,、邏輯思維能力、空間想象能力),,核心是能否掌握正確的思維方法,,包括邏輯思維與非邏輯思維。其基本要求包括:
(1)掌握解題的科學(xué)程序,;
(2)掌握數(shù)學(xué)中各種常用的思維方法,,如觀察,、試驗(yàn),、歸納,、演繹,、類比,、分析,、綜合,、抽象,、概括等,;
(3)掌握解題的基本策略,,能“因題制宜”地選擇對(duì)口的解題思路,使用有效的解題方法,、調(diào)動(dòng)精明的解題技巧;
(4)具有敏銳的直覺,。應(yīng)該明白,,我們的數(shù)學(xué)解題活動(dòng)是在縱橫交錯(cuò)的數(shù)學(xué)關(guān)系中進(jìn)行的,在這個(gè)過程中,,我們從一種可能性過渡到另一種可能性時(shí),,并非對(duì)每一個(gè)數(shù)學(xué)細(xì)節(jié)都洞察無遺,并非總能借助于“三段論”的橋梁,,而是在短時(shí)間內(nèi)朦朧地插上幻想的翅膀,,直接飛翔到最近的可能性上,從而達(dá)到對(duì)某種數(shù)學(xué)對(duì)象的本質(zhì)領(lǐng)悟:
11.解題具有實(shí)踐性與探索性的特征,,“就像游泳,,滑雪或彈鋼琴一樣,只能通過模仿和實(shí)踐來學(xué)到它……你想學(xué)會(huì)游泳,,你就必須下水,,你想成為解題的能手,你就必須去解題”,,“尋找題解,,不能教會(huì),而只能靠自己學(xué)會(huì)”,。
12.所謂解題經(jīng)驗(yàn),,就是某些數(shù)學(xué)知識(shí)、某些解題方法與某些條件的有序組合,。成功是一種有效的有序組合,,失敗是一種無效的無序組合(它從反面向我們提供有效的有序組合)。成功經(jīng)驗(yàn)所獲得的有序組合,,就好像建筑上的預(yù)制構(gòu)件(或稱為思維組塊),,遇到合適的場合,可以原封不動(dòng)地把它搬上去,。
13.認(rèn)為解題純粹是一種智能活動(dòng)顯然是錯(cuò)誤的,;決心與情緒所起的作用非常重要。教育學(xué)生解題是一種意志教育,。當(dāng)學(xué)生求解那些對(duì)他來說并不太容易的題目時(shí),,他學(xué)會(huì)了敗而不餒,學(xué)會(huì)了贊賞微小的進(jìn)展,,學(xué)會(huì)了等待主要念頭的萌動(dòng),,學(xué)會(huì)了當(dāng)主要念頭出現(xiàn)后如何全力以赴,,直撲問題的核心或主干;當(dāng)一旦突破關(guān)卡,,如何去占領(lǐng)問題的至高點(diǎn),,并冷靜地府視全局,從而得到問題的完善解決,。如果學(xué)生在解題過程中沒有機(jī)會(huì)嘗盡為求解而奮斗的喜怒哀樂,,那么他的數(shù)學(xué)解題訓(xùn)練就在最重要的地方失敗了。
14.教師的例題教學(xué)要暴露自己思維的真實(shí)過程,,老師備課時(shí),,遇上的曲折和錯(cuò)誤不能隨草紙扔到廢紙堆。如果教師掩瞞了解題中的曲折,,自己在講臺(tái)裝神弄巧,,得心應(yīng)手,左右逢源,,把自己打扮成超人,,將給學(xué)生的學(xué)習(xí)產(chǎn)生誤導(dǎo)。這樣的教師越高明,,學(xué)生越自卑,。
初中中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇十三
圓的定理:
1不在同一直線上的三點(diǎn)確定一個(gè)圓。
2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1①平分弦(不是直徑)的直徑垂直于弦,,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線經(jīng)過圓心,,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,,并且平分弦所對(duì)的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
5圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7同圓或等圓的半徑相等
8到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,,是以定點(diǎn)為圓心,定長為半徑的圓
9定理在同圓或等圓中,,相等的圓心角所對(duì)的弧相等,,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
10推論在同圓或等圓中,,如果兩個(gè)圓心角,、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
有理數(shù)的加法運(yùn)算
同號(hào)相加一邊倒;異號(hào)相加“大”減“小”,,
符號(hào)跟著大的跑;絕對(duì)值相等“零”正好,。
合并同類項(xiàng)
合并同類項(xiàng),法則不能忘,,只求系數(shù)和,,字母、指數(shù)不變樣,。
去,、添括號(hào)法則
去括號(hào),、添括號(hào),關(guān)鍵看符號(hào),,
括號(hào)前面是正號(hào),,去、添括號(hào)不變號(hào),,
括號(hào)前面是負(fù)號(hào),,去、添括號(hào)都變號(hào),。
一元一次方程
已知未知要分離,分離方法就是移,,加減移項(xiàng)要變號(hào),,乘除移了要顛倒。
平方差公式
平方差公式有兩項(xiàng),,符號(hào)相反切記牢,,首加尾乘首減尾,莫與完全公式相混淆,。
完全平方公式
完全平方有三項(xiàng),,首尾符號(hào)是同鄉(xiāng),首平方,、尾平方,,首尾二倍放中央;
首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央,。
因式分解
一提(公因式)二套(公式)三分組,,細(xì)看幾項(xiàng)不離譜,
兩項(xiàng)只用平方差,,三項(xiàng)十字相乘法,,陣法熟練不馬虎,
四項(xiàng)仔細(xì)看清楚,,若有三個(gè)平方數(shù)(項(xiàng)),,
就用一三來分組,否則二二去分組,,
五項(xiàng),、六項(xiàng)更多項(xiàng),二三,、三三試分組,,
以上若都行不通,拆項(xiàng),、添項(xiàng)看清楚,。
單項(xiàng)式運(yùn)算
加,、減、乘,、除,、乘(開)方,三級(jí)運(yùn)算分得清,,
系數(shù)進(jìn)行同級(jí)(運(yùn))算,,指數(shù)運(yùn)算降級(jí)(進(jìn))行。
一元一次不等式解題步驟
去分母,、去括號(hào),,移項(xiàng)時(shí)候要變號(hào),同類項(xiàng)合并好,,再把系數(shù)來除掉,,
兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了,。
一元一次不等式組的解集
大大取較大,,小小取較小,小大,、大小取中間,,大小、小大無處找,。
一元二次不等式,、一元一次絕對(duì)值不等式的解集
大(魚)于(吃)取兩邊,小(魚)于(吃)取中間,。
分式混合運(yùn)算法則
分式四則運(yùn)算,,順序乘除加減,乘除同級(jí)運(yùn)算,,除法符號(hào)須變(乘);
乘法進(jìn)行化簡,,因式分解在先,分子分母相約,,然后再行運(yùn)算;
加減分母需同,,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;
變號(hào)必須兩處,,結(jié)果要求最簡,。
平面直角坐標(biāo)系
1、平面直角坐標(biāo)系
在平面內(nèi)畫兩條互相垂直且有公共原點(diǎn)的數(shù)軸,,就組成了平面直角坐標(biāo)系,。
其中,水平的數(shù)軸叫做x軸或橫軸,,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,,取向上為正方向;兩軸的交點(diǎn)o(即公共的原點(diǎn))叫做直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,,叫做坐標(biāo)平面。
為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,,分別叫做第一象限、第二象限,、第三象限,、第四象限。
注意:x軸和y軸上的點(diǎn),,不屬于任何象限,。
2、點(diǎn)的坐標(biāo)的概念
點(diǎn)的坐標(biāo)用(a,,b)表示,,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,,中間有“,”分開,,橫,、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),,當(dāng)時(shí),,(a,b)和(b,,a)是兩個(gè)不同點(diǎn)的坐標(biāo),。
初中中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇十四
㈠、數(shù)與代數(shù)
a,、數(shù)與式:
1,、有理數(shù)
有理數(shù):①整數(shù)→正整數(shù)/0/負(fù)整數(shù)
②分?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),,選取某一長度作為單位長度,,規(guī)定直線上向右的方向?yàn)檎较颍偷玫綌?shù)軸,。②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示,。③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),,也稱這兩個(gè)數(shù)互為相反數(shù),。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),,位于原點(diǎn)的兩側(cè),,并且與原點(diǎn)距離相等,。④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大,。正數(shù)大于0,,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù),。
絕對(duì)值:①在數(shù)軸上,,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。②正數(shù)的絕對(duì)值是他的本身,、負(fù)數(shù)的絕對(duì)值是他的相反數(shù),、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,,絕對(duì)值大的反而小,。
有理數(shù)的運(yùn)算:
加法:①同號(hào)相加,取相同的符號(hào),,把絕對(duì)值相加,。②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),,取絕對(duì)值較大的數(shù)的符號(hào),,并用較大的絕對(duì)值減去較小的絕對(duì)值。③一個(gè)數(shù)與0相加不變,。
減法:減去一個(gè)數(shù),,等于加上這個(gè)數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,,同號(hào)得正,,異號(hào)得負(fù),絕對(duì)值相乘,。②任何數(shù)與0相乘得0,。③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù),。②0不能作除數(shù),。
乘方:求n個(gè)相同因數(shù)a的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,,a叫底數(shù),,n叫次數(shù)。
混合順序:先算乘法,,再算乘除,,最后算加減,有括號(hào)要先算括號(hào)里的。
2,、實(shí)數(shù)
無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:①如果一個(gè)正數(shù)x的平方等于a,,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。②如果一個(gè)數(shù)x的平方等于a,,那么這個(gè)數(shù)x就叫做a的平方根,。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。④求一個(gè)數(shù)a的平方根運(yùn)算,,叫做開平方,,其中a叫做被開方數(shù)。
立方根:①如果一個(gè)數(shù)x的立方等于a,,那么這個(gè)數(shù)x就叫做a的立方根,。②正數(shù)的立方根是正數(shù)、0的立方根是0,、負(fù)數(shù)的立方根是負(fù)數(shù),。③求一個(gè)數(shù)a的立方根的運(yùn)算叫開立方,其中a叫做被開方數(shù),。
實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無理數(shù),。②在實(shí)數(shù)范圍內(nèi),相反數(shù),,倒數(shù),,絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),,絕對(duì)值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示,。
3,、代數(shù)式
代數(shù)式:單獨(dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類項(xiàng):①所含字母相同,,并且相同字母的指數(shù)也相同的項(xiàng),,叫做同類項(xiàng)。②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng),。③在合并同類項(xiàng)時(shí),,我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變,。
4,、整式與分式
整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式,。②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。③一個(gè)多項(xiàng)式中,,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù),。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),,再合并同類項(xiàng),。
冪的運(yùn)算:aman=a(mn)
(am)n=amn
(a/b)n=an/bn除法一樣。
整式的乘法:①單項(xiàng)式與單項(xiàng)式相乘,,把他們的系數(shù),,相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,,作為積的因式,。②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),,再把所得的積相加,。③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),,再把所得的積相加,。
公式兩條:平方差公式/完全平方公式
整式的除法:
①單項(xiàng)式相除,把系數(shù),,同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,,則連同他的指數(shù)一起作為商的一個(gè)因式,。
②多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,,再把所得的商相加,。
分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式,。
方法:提公因式法,、運(yùn)用公式法、分組分解法,、十字相乘法,。
分式:
①整式a除以整式b,如果除式b中含有分母,,那么這個(gè)就是分式,,對(duì)于任何一個(gè)分式,分母不為0,。
②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,,分式的值不變。
分式的運(yùn)算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母,。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù),。
加減法:
①同分母的分式相加減,分母不變,,把分子相加減,。
②異分母的分式先通分,化為同分母的分式,,再加減,。
分式方程:
①分母中含有未知數(shù)的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根,。
20xx年中考數(shù)學(xué)基礎(chǔ)知識(shí)總結(jié)20xx年中考數(shù)學(xué)基礎(chǔ)知識(shí)總結(jié)
b,、方程與不等式
1、方程與方程組
一元一次方程:
①在一個(gè)方程中,,只含有一個(gè)未知數(shù),,并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程,。
②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,,移項(xiàng),,合并同類項(xiàng),未知數(shù)系數(shù)化為1,。
二元一次方程:含有兩個(gè)未知數(shù),,并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組,。適合一個(gè)二元一次方程的一組未知數(shù)的值,,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法,。
一元二次方程:只有一個(gè)未知數(shù),,并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程
1)一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,,好像解法,,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來表示,,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,,就是當(dāng)?shù)?的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,,圖象與x軸的交點(diǎn),。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數(shù)有頂點(diǎn)式(-b/2a,4ac-b2/4a),,這大家要記住,,很重要,因?yàn)樵谏厦嬉呀?jīng)說過了,,一元二次方程也是二次函數(shù)的一部分,,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,,使方程變?yōu)橥耆椒焦?,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,,和十字相乘法,。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),,把方程化為幾個(gè)乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,,方程的根x1={-b√[b2-4ac)]}/2a,x2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數(shù)項(xiàng)移到方程的右邊,,再把二次項(xiàng)的系數(shù)化為1,,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,,然后看看是否能用提取公因式,,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數(shù)分別代入,,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,,常數(shù)項(xiàng)的系數(shù)為c
4)韋達(dá)定理
利用韋達(dá)定理去了解,,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,,二根之積=c/a
也可以表示為x1x2=-b/a,x1x2=c/a,。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,,根的判別式可在書面上可以寫為“△”,讀作“diata”,,而△=b2-4ac,,這里可以分為3種情況:
i當(dāng)△>0時(shí),,一元二次方程有2個(gè)不相等的實(shí)數(shù)根;
ii當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;
iii當(dāng)△<0時(shí),,一元二次方程沒有實(shí)數(shù)根(在這里,,學(xué)到高中就會(huì)知道,這里有2個(gè)虛數(shù)根)
2,、不等式與不等式組
不等式:
①用符號(hào)〉,,=,〈號(hào)連接的式子叫不等式,。
②不等式的兩邊都加上或減去同一個(gè)整式,,不等號(hào)的方向不變。
③不等式的兩邊都乘以或者除以一個(gè)正數(shù),,不等號(hào)方向不變,。
④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反,。
不等式的解集:
①能使不等式成立的未知數(shù)的值,,叫做不等式的解。
②一個(gè)含有未知數(shù)的不等式的所有解,,組成這個(gè)不等式的解集,。
③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,,只含有一個(gè)未知數(shù),,且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:
①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,,就組成了一元一次不等式組,。
②一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集,。
③求不等式組解集的過程,,叫做解不等式組。
一元一次不等式的符號(hào)方向:
在一元一次不等式中,,不像等式那樣,,等號(hào)是不變的,他是隨著你加或乘的運(yùn)算改變,。
在不等式中,,如果加上同一個(gè)數(shù)(或加上一個(gè)正數(shù)),不等式符號(hào)不改向;例如:a>b,ac>bc
在不等式中,,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;例如:a>b,,a-c>b-c
在不等式中,,如果乘以同一個(gè)正數(shù),,不等號(hào)不改向;例如:a>b,a*c>b*c(c>0)
在不等式中,,如果乘以同一個(gè)負(fù)數(shù),,不等號(hào)改向;例如:a>b,a*c
如果不等式乘以0,,那么不等號(hào)改為等號(hào)
所以在題目中,,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,,如果出現(xiàn)了,,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;
變量:因變量,,自變量,。
在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,,用豎直方向的數(shù)軸上的點(diǎn)表示因變量,。
一次函數(shù):①若兩個(gè)變量x,間的關(guān)系式可以表示成=xb(b為常數(shù),,不等于0)的形式,,則稱是x的一次函數(shù)。②當(dāng)b=0時(shí),,稱是x的正比例函數(shù),。
一次函數(shù)的圖象:①把一個(gè)函數(shù)的自變量x與對(duì)應(yīng)的因變量的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),,所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象,。②正比例函數(shù)=x的圖象是經(jīng)過原點(diǎn)的一條直線。③在一次函數(shù)中,,當(dāng)〈0,,b〈o,則經(jīng)234象限;當(dāng)〈0,,b〉0時(shí),,則經(jīng)124象限;當(dāng)〉0,b〈0時(shí),,則經(jīng)134象限;當(dāng)〉0,,b〉0時(shí),則經(jīng)123象限,。④當(dāng)〉0時(shí),,的值隨x值的增大而增大,當(dāng)x〈0時(shí),,的值隨x值的增大而減少,。
a,、圖形的認(rèn)識(shí)
1、點(diǎn),,線,,面
點(diǎn),線,,面:①圖形是由點(diǎn),,線,面構(gòu)成的,。②面與面相交得線,,線與線相交得點(diǎn)。③點(diǎn)動(dòng)成線,,線動(dòng)成面,,面動(dòng)成體。
展開與折疊:①在棱柱中,,任何相鄰的兩個(gè)面的交線叫做棱,,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長相等,,棱柱的上下底面的形狀相同,,側(cè)面的形狀都是長方體。②n棱柱就是底面圖形有n條邊的棱柱,。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,,截出的面叫做截面。
視圖:主視圖,,左視圖,,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形,。
20xx年中考數(shù)學(xué)基礎(chǔ)知識(shí)總結(jié)建造師考試_建筑工程類工程師考試網(wǎng)
弧,、扇形:①由一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個(gè)扇形,。
2,、角
線:①線段有兩個(gè)端點(diǎn)。②將線段向一個(gè)方向無限延長就形成了射線,。射線只有一個(gè)端點(diǎn),。③將線段的兩端無限延長就形成了直線。直線沒有端點(diǎn),。④經(jīng)過兩點(diǎn)有且只有一條直線,。
比較長短:①兩點(diǎn)之間的所有連線中,線段最短。②兩點(diǎn)之間線段的長度,,叫做這兩點(diǎn)之間的距離,。
角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn),。②一度的1/60是一分,一分的1/60是一秒,。
角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的,。②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),,所成的角叫做平角,。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),,所成的角叫做周角,。③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,,這條射線叫做這個(gè)角的平分線,。
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線,。②經(jīng)過直線外一點(diǎn),,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,,那么這兩條直線互相平行,。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直,。②互相垂直的兩條直線的交點(diǎn)叫做垂足,。③平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直,。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線,。
垂直平分線垂直平分的一定是線段,不能是射線或直線,,這根據(jù)射線和直線可以無限延長有關(guān),,再看后面的,垂直平分線是一條直線,,所以在畫垂直平分線的時(shí)候,,確定了2點(diǎn)后(關(guān)于畫法,后面會(huì)講)一定要把線段穿出2點(diǎn),。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;
判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上
角平分線:把一個(gè)角平分的射線叫該角的角平分線,。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,,不是線段也不是直線,,很多時(shí),,在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,,這也涉及到軌跡的問題,,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形,、矩形的一切性質(zhì)
初中中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇十五
在日常的練習(xí),、作業(yè)和考試中,學(xué)生都會(huì)或多或少地出現(xiàn)一些做錯(cuò)的題目,,而對(duì)待錯(cuò)題的態(tài)度不同,,學(xué)習(xí)的效果就會(huì)有很大的差別。丁老師就來告訴同學(xué)們怎么來用好我們的錯(cuò)題吧,!
錯(cuò)題主要涉及錯(cuò)題收集和存檔,、錯(cuò)題改正、錯(cuò)題分享,、錯(cuò)題應(yīng)用四個(gè)環(huán)節(jié),。
這里的錯(cuò)題,不僅指各級(jí)各類數(shù)學(xué)考試中的錯(cuò)題,,還包括平時(shí)數(shù)學(xué)作業(yè)中做錯(cuò)的題目,。最好把錯(cuò)題都摘錄到一個(gè)固定的本子上面(錯(cuò)題本),,便于自己以后查閱,。即使是曾經(jīng)錯(cuò)了而現(xiàn)在理解了的題目也最好登記在冊,它們形成獨(dú)具個(gè)性的學(xué)習(xí)軌跡,,有利于知識(shí)的理解,、識(shí)記、儲(chǔ)存和提取,。
在進(jìn)行錯(cuò)題收集的時(shí)候,,一定要注意分類。分類的方法很多,,可以按照錯(cuò)題原因分類,、按照錯(cuò)題中所隱含知識(shí)的章節(jié)進(jìn)行分類,甚至還可以按照題型進(jìn)行分類,。這樣整理好的錯(cuò)題是系統(tǒng)的,,到最后復(fù)習(xí)時(shí)就有比較強(qiáng)的針對(duì)性。
收集錯(cuò)題以后,,接下來就是改錯(cuò)了,,這是錯(cuò)題管理的目的。學(xué)生要爭取自己獨(dú)立對(duì)錯(cuò)題進(jìn)行分析,然后找出正確的解答,,并訂正,。在自己獨(dú)立思考的基礎(chǔ)上,如果還是得不到答案,,這時(shí)候就需要積極地求助他人了,,可以是學(xué)得比較好的同學(xué),也可以是老師,。讓他們幫自己分析原因,,在他們的啟發(fā)引導(dǎo)下進(jìn)行改正。找到出錯(cuò)的癥結(jié)所在,,最好能在錯(cuò)題后面附上自己的心得體會(huì),可以依次回答以下問題:
這道題目錯(cuò)在什么地方,?
這道題目為什么做錯(cuò)了,?(錯(cuò)在計(jì)算、化簡,?錯(cuò)在概念理解,?錯(cuò)在理解題意?錯(cuò)在邏輯關(guān)系,?錯(cuò)在以偏概全,?錯(cuò)在粗心大意?錯(cuò)在思維品質(zhì),?錯(cuò)在類比?等等,。)
這道題目正確的做法是什么,?
這道題目有沒有其它解法?哪種方法更好,?
錯(cuò)題改正這個(gè)過程其實(shí)就是學(xué)生再學(xué)習(xí),、再認(rèn)識(shí)、再提高的過程,,它使學(xué)生對(duì)易出錯(cuò)的知識(shí)的理解更全面透徹,,掌握更加牢固,同時(shí)也提高了學(xué)生自主學(xué)習(xí)的能力,。一般意義上,,任何學(xué)習(xí)都需要反思,錯(cuò)題改正是反思的具體途徑之一,。
整理錯(cuò)題并不是為了做得好看,,是為了實(shí)用,對(duì)自己的學(xué)習(xí)有幫助。因而沒有固定的標(biāo)準(zhǔn),,關(guān)鍵要符合學(xué)生自己的習(xí)慣,。但是學(xué)生一定要抽時(shí)間翻閱自己辛勤勞動(dòng)的結(jié)晶,對(duì)其中的錯(cuò)題進(jìn)行溫習(xí),,這樣做有時(shí)候可以收到意想不到的效果,,會(huì)有新的體會(huì)。其實(shí)整理好的錯(cuò)題集就相當(dāng)于是以前做過的大量習(xí)題中的精華薈萃(這要建立在學(xué)生認(rèn)真整理的基礎(chǔ)上),,是最適合學(xué)生個(gè)人的學(xué)習(xí)資料,,比任何一本參考書、習(xí)題集都有用,,有價(jià)值,。
在現(xiàn)行的學(xué)習(xí)體制下,學(xué)生之間的競爭意識(shí)很強(qiáng),,但是主動(dòng)交流分享意識(shí)非常薄弱,。其實(shí)同學(xué)就是一個(gè)巨大的學(xué)習(xí)資源庫,只要每個(gè)學(xué)生都愿意敞開心扉,,真誠地交流,,相互扶持,相互幫助和鼓勵(lì),,學(xué)生就可以從同學(xué)身上學(xué)到很多東西,。正所謂“你有一種思想,我有一種思想,,交流之后我們就同時(shí)擁有了兩種思想”,,學(xué)生之間的錯(cuò)題集也可以相互交流。這是因?yàn)槊總€(gè)學(xué)生出錯(cuò)的原因各不相同,,所以每個(gè)人建立的錯(cuò)題集也不同,,通過相互交流可以從別人的錯(cuò)誤中汲取教訓(xùn),拓展自己的視野,,得到啟發(fā),,以警示自己不犯同樣錯(cuò)誤。不同的人從相同的題目中得到的是不同的體會(huì),,通過交流大家就可以領(lǐng)略到知識(shí)的不同側(cè)面,,從而對(duì)知識(shí)掌握得更加牢固。在交流的氛圍中,,學(xué)生改變了學(xué)習(xí)方式,,增強(qiáng)了學(xué)習(xí)數(shù)學(xué)的積極性。
將錯(cuò)題收集在一起并改正,,還不能完全說明學(xué)生對(duì)這一知識(shí)點(diǎn)的漏洞就補(bǔ)好了,。最好的狀況是對(duì)于每一個(gè)錯(cuò)題,,學(xué)生自己還必須查找資料,找出與之相同或相關(guān)的題型,,進(jìn)行練習(xí)解答,。如果沒有困難,則說明學(xué)生對(duì)這一知識(shí)點(diǎn)可能已經(jīng)掌握,。此時(shí),,學(xué)生可以嘗試著進(jìn)行更高難度的事情:錯(cuò)題改編。將題目中的條件和結(jié)論換一下,,還成立嗎,?把條件減弱或者把結(jié)論加強(qiáng),命題還成立嗎,?或者嘗試著編一道類似的題目,,還能做嗎?經(jīng)歷了這么一個(gè)思維洗禮,,學(xué)生對(duì)知識(shí)的理解會(huì)更深刻,,對(duì)方法的把握會(huì)更透徹,不管條件怎么變,,他們基本上都可以應(yīng)付自如了。一般情況下,,學(xué)生在學(xué)??赡軟]有這么充裕的時(shí)間來做這樣的事情,但是學(xué)生之間相互協(xié)助,,每人找一個(gè)類型的題目,,或者每人提出一個(gè)想法,全班合起來就基本找全了所有的題型,,改編了很多道類似的題目,。
錯(cuò)題管理有助于學(xué)生的數(shù)學(xué)學(xué)習(xí)。但是,,錯(cuò)題管理并不是學(xué)習(xí)的目的,,而是幫助學(xué)生進(jìn)行有效學(xué)習(xí)的一種手段。制作錯(cuò)題集更不是任務(wù),,不一定要做得精致,、全面,它只是一種訓(xùn)練思維的載體,。最關(guān)鍵的是,,學(xué)生和老師不能輕易放過錯(cuò)題,徹底弄清楚錯(cuò)題所反映的問題,,學(xué)以致用,。在反思學(xué)習(xí)的過程中完善自己的知識(shí)結(jié)構(gòu),,提升解決問題的能力,實(shí)現(xiàn)有效學(xué)習(xí)和有效教學(xué)的終極目標(biāo),。