在日常學(xué)習(xí)、工作或生活中,,大家總少不了接觸作文或者范文吧,通過文章可以把我們那些零零散散的思想,,聚集在一塊,。相信許多人會覺得范文很難寫?下面是小編幫大家整理的優(yōu)質(zhì)范文,,僅供參考,,大家一起來看看吧。
初中數(shù)學(xué)圓的解題思路篇一
1,、圓的定義
在一個個平面內(nèi),,線段oa繞它固定的一個端點o旋轉(zhuǎn)一周,另一個端點a隨之旋轉(zhuǎn)所形成的圖形叫做圓,,固定的端點o叫做圓心,,線段oa叫做半徑。
2,、直線圓的與置位關(guān)系
1.線直與圓有唯公一共時,點做直叫與圓線切
2.三角的外形圓接的圓叫做三心形角外心
3.弦切角于所等夾弧所對的的圓心角
4.三角的內(nèi)形圓切的圓叫做三心形角內(nèi)心
5.垂于直徑半直線必為圓的的切線
6.過徑半外的點并且垂直端于半的徑直線是圓切線
7.垂于直徑半直線是圓的的切線
8.圓切線垂的直過切于點半徑
3,、圓的幾何表示
以點o為圓心的圓記作“⊙o”,讀作“圓o”
垂徑定理:垂直于弦的直徑平分這條弦,,并且平分弦所對的弧,。
推論1:
(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧,。
(2)弦的垂直平分線經(jīng)過圓心,,并且平分弦所對的兩條弧。
(3)平分弦所對的一條弧的直徑垂直平分弦,,并且平分弦所對的另一條弧,。
推論2:圓的兩條平行弦所夾的弧相等。
垂徑定理及其推論可概括為:
過圓心
垂直于弦
直徑 平分弦 知二推三
平分弦所對的優(yōu)弧
平分弦所對的劣弧
1,、弦
連接圓上任意兩點的線段叫做弦,。(如圖中的ab)
2,、直徑
經(jīng)過圓心的弦叫做直徑。(如途中的cd)
直徑等于半徑的2倍,。
3,、半圓
圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫做半圓,。
4,、弧、優(yōu)弧,、劣弧
圓上任意兩點間的部分叫做圓弧,,簡稱弧。
弧用符號“⌒”表示,,以a,,b為端點的弧記作“ ”,讀作“圓弧ab”或“弧ab”,。
大于半圓的弧叫做優(yōu)弧(多用三個字母表示);小于半圓的弧叫做劣弧(多用兩個字母表示)
1,、圓的軸對稱性
圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸,。
2,、圓的中心對稱性
圓是以圓心為對稱中心的中心對稱圖形。
1,、圓心角
頂點在圓心的角叫做圓心角,。
2、弦心距
從圓心到弦的距離叫做弦心距,。
3,、弧、弦,、弦心距,、圓心角之間的關(guān)系定理
在同圓或等圓中,相等的圓心角所對的弧相等,,所對的弦想等,,所對的弦的弦心距相等。
推論:在同圓或等圓中,,如果兩個圓的圓心角,、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,,那么它們所對應(yīng)的其余各組量都分別相等,。
1、圓周角
頂點在圓上,并且兩邊都和圓相交的角叫做圓周角,。
2,、圓周角定理
一條弧所對的圓周角等于它所對的圓心角的一半。
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,,相等的圓周角所對的弧也相等,。
推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推論3:如果三角形一邊上的中線等于這邊的一半,,那么這個三角形是直角三角形,。
設(shè)⊙o的半徑是r,點p到圓心o的距離為d,,則有:
d
d=r 點p在⊙o上;
d>r 點p在⊙o外,。
1、過三點的圓
不在同一直線上的三個點確定一個圓,。
2、三角形的外接圓
經(jīng)過三角形的三個頂點的圓叫做三角形的外接圓,。
3,、三角形的外心
三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心,。
4,、圓內(nèi)接四邊形性質(zhì)(四點共圓的判定條件)
圓內(nèi)接四邊形對角互補。
先假設(shè)命題中的結(jié)論不成立,,然后由此經(jīng)過推理,,引出矛盾,判定所做的假設(shè)不正確,,從而得到原命題成立,,這種證明方法叫做反證法。
直線和圓有三種位置關(guān)系,,具體如下:
(1)相交:直線和圓有兩個公共點時,,叫做直線和圓相交,這時直線叫做圓的割線,,公共點叫做交點;
(2)相切:直線和圓有唯一公共點時,,叫做直線和圓相切,這時直線叫做圓的切線,,
(3)相離:直線和圓沒有公共點時,,叫做直線和圓相離。
如果⊙o的半徑為r,,圓心o到直線l的距離為d,那么:
直線l與⊙o相交 d
直線l與⊙o相切 d=r;
直線l與⊙o相離 d>r;
1,、切線的判定定理
經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。
2、切線的性質(zhì)定理
圓的切線垂直于經(jīng)過切點的半徑,。
1,、切線長
在經(jīng)過圓外一點的圓的切線上,這點和切點之間的線段的長叫做這點到圓的切線長,。
2,、切線長定理
從圓外一點引圓的兩條切線,它們的切線長相等,,圓心和這一點的連線平分兩條切線的夾角,。
1、圓和圓的位置關(guān)系
如果兩個圓沒有公共點,,那么就說這兩個圓相離,,相離分為外離和內(nèi)含兩種。
如果兩個圓只有一個公共點,,那么就說這兩個圓相切,,相切分為外切和內(nèi)切兩種。
如果兩個圓有兩個公共點,,那么就說這兩個圓相交,。
2、圓心距
兩圓圓心的距離叫做兩圓的圓心距,。
3,、圓和圓位置關(guān)系的性質(zhì)與判定
設(shè)兩圓的半徑分別為r和r,圓心距為d,,那么
兩圓外離 d>r+r
兩圓外切 d=r+r
兩圓相交 r-r
兩圓內(nèi)切 d=r-r(r>r)
兩圓內(nèi)含 dr)
4,、兩圓相切、相交的重要性質(zhì)
如果兩圓相切,,那么切點一定在連心線上,,它們是軸對稱圖形,對稱軸是兩圓的連心線;相交的兩個圓的連心線垂直平分兩圓的公共弦,。
1,、三角形的內(nèi)切圓
與三角形的各邊都相切的圓叫做三角形的內(nèi)切圓。
2,、三角形的內(nèi)心
三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點,,它叫做三角形的內(nèi)心。
1,、正多邊形的中心
正多邊形的外接圓的圓心叫做這個正多邊形的中心,。
2、正多邊形的半徑
正多邊形的外接圓的半徑叫做這個正多邊形的半徑,。
3,、正多邊形的邊心距
正多邊形的中心到正多邊形一邊的距離叫做這個正多邊形的邊心距。
4、中心角
正多邊形的每一邊所對的外接圓的圓心角叫做這個正多邊形的中心角,。
1,、正多邊形的定義
各邊相等,各角也相等的多邊形叫做正多邊形。
2、正多邊形和圓的關(guān)系
只要把一個圓分成相等的一些弧,,就可以做出這個圓的內(nèi)接正多邊形,這個圓就是這個正多邊形的外接圓,。
1、正多邊形的軸對稱性
正多邊形都是軸對稱圖形,。一個正n邊形共有n條對稱軸,,每條對稱軸都通過正n邊形的中心。
2,、正多邊形的中心對稱性
邊數(shù)為偶數(shù)的正多邊形是中心對稱圖形,,它的對稱中心是正多邊形的中心。
3,、正多邊形的畫法
先用量角器或尺規(guī)等分圓,,再做正多邊形。
1,、弧長公式
n°的圓心角所對的弧長l的計算公式為
2,、扇形面積公式
其中n是扇形的圓心角度數(shù),,r是扇形的半徑,,l是扇形的弧長。
3,、圓錐的側(cè)面積
其中l(wèi)是圓錐的母線長,,r是圓錐的地面半徑。