作為一名教職工,就不得不需要編寫教案,編寫教案有利于我們科學(xué),、合理地支配課堂時(shí)間,。那么我們?cè)撊绾螌懸黄^為完美的教案呢?下面是小編為大家?guī)淼膬?yōu)秀教案范文,,希望大家可以喜歡,。
湘教版八年級(jí)數(shù)學(xué)教案篇一
學(xué)習(xí)目標(biāo):
1、鞏固對(duì)整式乘法法則的理解,,會(huì)用法則進(jìn)行計(jì)算
2,、在學(xué)生大量實(shí)踐的基礎(chǔ)上,是學(xué)生認(rèn)識(shí)單項(xiàng)式乘以單項(xiàng)式法則是整式乘法的關(guān)鍵,,“多乘多”,、“單乘多”都轉(zhuǎn)化為單項(xiàng)式相乘。
3,、在通過學(xué)生練習(xí)中,,體會(huì)運(yùn)算律是運(yùn)算的通性,感受轉(zhuǎn)化思想,。,。
4、進(jìn)一步培養(yǎng)學(xué)生有條理的思考和表達(dá)能力,。
學(xué)習(xí)重點(diǎn):整式乘法的法則運(yùn)用
學(xué)習(xí)難點(diǎn):整式乘法中學(xué)生思維能力的培養(yǎng)
學(xué)習(xí)過程
1.學(xué)習(xí)準(zhǔn)備
1.你能寫出整式乘法的法則嗎?試一試,。
2.談?wù)勗谡匠朔ǖ膶W(xué)習(xí)過程中,你有什么收獲?有什么不足?
利用課下時(shí)間和同學(xué)交流一下,,能解決嗎?
2.合作探究
1.練習(xí)
(1)(-5a2b)(2a2bc)(2)(-ax)(-bx3)
(3)(2x104)(6x105)(4)(x)?2x3?(-3x2)
2、結(jié)合上面練習(xí),,談?wù)勗趩雾?xiàng)式乘單項(xiàng)式運(yùn)算中怎樣進(jìn)行計(jì)算?要注意些什么?
3,、練習(xí)
(1)(-3x)(4x2-x+1)(2)(-xy)(2x-5y-1)
(3)(2x+3)(4x+1)(4)(x+1)(x2-2x+3)
4、結(jié)合上面練習(xí),,體會(huì)單項(xiàng)式乘多項(xiàng)式,、多項(xiàng)式乘多項(xiàng)式運(yùn)算中,都是以單項(xiàng)式乘單項(xiàng)式為基礎(chǔ),、運(yùn)用乘法分配律進(jìn)行計(jì)算,。
3.自我測(cè)試
1、3x2?(-4xy)?(-xy)=
2,、若(mx3)?(2xn)=-8x18,則m=
3,、一個(gè)長(zhǎng)方體的長(zhǎng)、寬,、高分別為3x-4,2x和x,,它的體積是
4、若m2-2m=1,則2m2-4m+的值是
5,、解方程:1-(2x+1)(x-2)=x2-(3x-1)(x+3)-11
6,、當(dāng)(x2+mx+8)(x2-3x+n)展開后,如果不含x2和x3的項(xiàng),,求(-m)3n的值.
7,、計(jì)算:(y+1)(y2-y+1)+y(1+y)(1-y),其中y=-.
8、(北京)已知x2-5x=14,(x-1)(2x-1)-(x+1)2+1的值,。
9,、某公園要建如圖所示的形狀的草坪(陰影部分),求鋪設(shè)草坪多少m2?若每平
方米草坪260元,,則為修建該草坪需投資多少元?
湘教版八年級(jí)數(shù)學(xué)教案篇二
1,、教材p140探究欄目的意圖。
(1),、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計(jì)算方法,。
(2)、加深了對(duì)“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時(shí),,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,,即權(quán)。
這個(gè)探究欄目也可以幫助學(xué)生去回憶,、復(fù)習(xí)七年級(jí)下的關(guān)于頻數(shù)分布表的一些內(nèi)容,,比如組、組中值及頻數(shù)在表中的具體意義,。
2,、教材p140的思考的意圖。
(2),、幫助學(xué)生理解表中所表達(dá)出來的信息,,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力。
3,、p141利用計(jì)算器計(jì)算平均值
這部分篇幅較小,,與傳統(tǒng)教材那種詳細(xì)介紹計(jì)算器使用方法產(chǎn)生明顯對(duì)比。一則由于學(xué)校中學(xué)生使用計(jì)算器不同,,其操作過程有差別亦不同,,再者,各種計(jì)算器的使用說明書都有詳盡介紹,,同時(shí)也說明在今后中考趨勢(shì)仍是不允許使用計(jì)算器,。所以本節(jié)課的重點(diǎn)內(nèi)容不是利用計(jì)算器求加權(quán)平均數(shù),但是掌握其使用方法確實(shí)可以運(yùn)算變得簡(jiǎn)單,。統(tǒng)計(jì)中一些數(shù)據(jù)較大,、較多的計(jì)算也變得容易些了。
湘教版八年級(jí)數(shù)學(xué)教案篇三
從上學(xué)期的期末考試來看,本班無論優(yōu)秀率還是合格率都有不小的退步,。優(yōu)秀率僅僅只有13%,,而合格率也只達(dá)到40%,兩極分化的現(xiàn)象再一次增大,,與我預(yù)期的目標(biāo)有較大的差距,。通過調(diào)閱學(xué)生的試卷,發(fā)現(xiàn)學(xué)生在知識(shí)運(yùn)用上很不熟練,,特別是對(duì)于解答綜合性習(xí)題時(shí)欠缺靈活性,。
二、指導(dǎo)思想
堅(jiān)持黨的教育方針,,結(jié)合《初中數(shù)學(xué)新課程標(biāo)準(zhǔn)》,,根據(jù)學(xué)生實(shí)際情況,積極開展課堂教學(xué)改革,,提高課堂教學(xué)效率,,向45分鐘要質(zhì)量。一方面鞏固學(xué)生的基礎(chǔ)知識(shí),,另一方面提高學(xué)生運(yùn)用知識(shí)的能力,。特別是訓(xùn)練學(xué)生的探究思維能力,和發(fā)散式思維模式,,提高學(xué)生知識(shí)運(yùn)用的能力,。并通過本學(xué)期的課堂教學(xué),完成八年級(jí)下冊(cè)的數(shù)學(xué)教學(xué)任務(wù),。
三,、教材目標(biāo)及要求:
1、二次根式的重點(diǎn)是二次根式的運(yùn)算,,難點(diǎn)是根式四則混算及實(shí)際應(yīng)用,。
4、平行四邊形的重點(diǎn)是平行四邊形的定義,、性質(zhì)和判定,難點(diǎn)是平行四邊形與各種特殊平行四邊形之間的聯(lián)系和區(qū)別以及中心對(duì)稱,。
要求:知識(shí)技能目標(biāo):掌握二次根式的概念,、性質(zhì)及計(jì)算;掌握勾股定理及其逆定理,;探究平行四邊形,、特殊四邊形及梯形、等腰梯形性質(zhì)與判定,;學(xué)習(xí)一次函數(shù)的圖像,、性質(zhì)與應(yīng)用;會(huì)分析數(shù)據(jù)并從中獲取總體信息。
過程方法目標(biāo):發(fā)展學(xué)生推理能力,;建立函數(shù)建模的思維方式,;理解勾股定理的意義與內(nèi)涵;提高幾何說理能力及統(tǒng)計(jì)意識(shí),。態(tài)度情感目標(biāo):豐富學(xué)生數(shù)學(xué)經(jīng)驗(yàn),,增加邏輯推理能力,感受數(shù)學(xué)與生活的關(guān)聯(lián),。班級(jí)教學(xué)目標(biāo):優(yōu)秀率:15%,;合格率:55%。
四,、教材分析
第十六章二次根式:本章主要內(nèi)容是二次根式的概念,、性質(zhì)、化簡(jiǎn)和有關(guān)的計(jì)算,。本章重點(diǎn)是理解二次根式的性質(zhì),,及二次根式的化簡(jiǎn)和計(jì)算。本章的難點(diǎn)是正確理解二次根式的性質(zhì)和運(yùn)算法則,。
第十七章勾股定理:本章主要探索直角三角形的三邊關(guān)系,,學(xué)習(xí)勾股定理及勾股定理的逆定理,學(xué)會(huì)利用三邊關(guān)系判斷一個(gè)三角形是否為直角三角形,。教學(xué)重點(diǎn):勾股定理及勾股定理的逆定理的理解與應(yīng)用,。教學(xué)難點(diǎn):探索直角三角形三邊關(guān)系時(shí),理解勾股定理及勾股定理的逆定理,。
第十八章平行四邊形:本章主要探究?jī)深愄厥獾乃倪呅蔚男再|(zhì)與判定,,即平行四邊形和梯形有關(guān)的性質(zhì)與判定。教學(xué)重點(diǎn):平行四邊形的定義,、性質(zhì)和判定,;特殊平行四邊形(矩形、菱形,、正方形)的性質(zhì)與判定,;梯形及特殊梯形(等腰梯形)的性質(zhì)與判定。教學(xué)難點(diǎn):平行四邊形的性質(zhì)與判定及其應(yīng)用,;特殊平行四邊形的性質(zhì)與判定及其應(yīng)用,;等腰梯形的性質(zhì)與判定及其應(yīng)用。
第十九章一次函數(shù):本章主要學(xué)習(xí)一次函數(shù)及其三種表達(dá)方式,,包括正比例函數(shù),、一次函數(shù)的概念、圖象,、性質(zhì)和應(yīng)用,。學(xué)會(huì)用函數(shù)的觀點(diǎn)認(rèn)識(shí)一元一次方程,、一元一次不等式及二元一次方程組。本章重點(diǎn)內(nèi)容是正比例函數(shù),、一次函數(shù)的概念,、圖象和性質(zhì)。教學(xué)難點(diǎn)是培養(yǎng)學(xué)生初步形成數(shù)形結(jié)合的思維模式,。第二十章數(shù)據(jù)的分析:本章主要學(xué)習(xí)平均數(shù),、中位數(shù)和眾數(shù),理解它們所反映出的數(shù)據(jù)的本質(zhì),。教學(xué)重點(diǎn):求平均數(shù),、中位數(shù)與方差;理解平均數(shù),、中位數(shù)和眾數(shù)所表達(dá)的含義,;區(qū)別算術(shù)平均數(shù)與加權(quán)平均數(shù)之間的聯(lián)系和區(qū)別。教學(xué)難點(diǎn):求加權(quán)平均數(shù),、中位數(shù)和方差,;根據(jù)平均數(shù)、加權(quán)平均數(shù),、中位數(shù),、眾數(shù)、極差和方差對(duì)數(shù)據(jù)作出比較準(zhǔn)確的描述,。
五,、教學(xué)措施
1、課前作好充分準(zhǔn)備,,備好教材,,備好學(xué)生。精心設(shè)計(jì)探究問題,,認(rèn)真講解方法概念,,深入分析思維模式,做到重點(diǎn)突出,,難點(diǎn)透徹,。
2、加強(qiáng)課后總結(jié)和對(duì)學(xué)生的課后輔導(dǎo),。認(rèn)真總結(jié)每一堂課的成敗得失,,深入學(xué)生了解課堂教學(xué)的實(shí)際效果,耐心輔導(dǎo)存在問題的學(xué)生,。
3、搞好單元測(cè)試及試卷分析,,針對(duì)試卷中存在的問題,,及時(shí)采取行之有效的補(bǔ)救措施,,切實(shí)解決學(xué)生數(shù)學(xué)學(xué)習(xí)中存在的困惑。
六,、課時(shí)安排(略)
湘教版八年級(jí)數(shù)學(xué)教案篇四
一,、教學(xué)目標(biāo):熟練地進(jìn)行分式乘除法的混合運(yùn)算。
二,、重點(diǎn),、難點(diǎn)
1、重點(diǎn):熟練地進(jìn)行分式乘除法的混合運(yùn)算,。
2,、難點(diǎn):熟練地進(jìn)行分式乘除法的混合運(yùn)算。
3,、認(rèn)知難點(diǎn)與突破方法:
緊緊抓住分式乘除法的混合運(yùn)算先統(tǒng)一成為乘法運(yùn)算這一點(diǎn),,然后利用上節(jié)課分式乘法運(yùn)算的基礎(chǔ),達(dá)到熟練地進(jìn)行分式乘除法的混合運(yùn)算的目的,。課堂練習(xí)以學(xué)生自己討論為主,,教師可組織學(xué)生對(duì)所做的題目作自我評(píng)價(jià),關(guān)鍵是點(diǎn)撥運(yùn)算符號(hào)問題,、變號(hào)法則,。
三、例,、習(xí)題的意圖分析
1,、p17頁例4是分式乘除法的混合運(yùn)算。分式乘除法的混合運(yùn)算先把除法統(tǒng)一成乘法運(yùn)算,,再把分子,、分母中能因式分解的多項(xiàng)式分解因式,最后進(jìn)行約分,,注意最后的結(jié)果要是最簡(jiǎn)分式或整式,。
教材p17例4只把運(yùn)算統(tǒng)一乘法,,而沒有把25x2-9分解因式,就得出了最后的結(jié)果,教師在見解是不要跳步太快,,以免學(xué)習(xí)有困難的學(xué)生理解不了,造成新的疑點(diǎn),。
2,,p17頁例4中沒有涉及到符號(hào)問題,可運(yùn)算符號(hào)問題,、變號(hào)法則是學(xué)生學(xué)習(xí)中重點(diǎn),,也是難點(diǎn),故補(bǔ)充例題,,突破符號(hào)問題,。
四,、課堂引入
計(jì)算
(1)(2)
五、例題講解
(p17)例4.計(jì)算
[分析]是分式乘除法的混合運(yùn)算,。分式乘除法的混合運(yùn)算先統(tǒng)一成為乘法運(yùn)算,,再把分子、分母中能因式分解的多項(xiàng)式分解因式,,最后進(jìn)行約分,,注意最后的計(jì)算結(jié)果要是最簡(jiǎn)的。
(補(bǔ)充)例,。計(jì)算
(1)
=(先把除法統(tǒng)一成乘法運(yùn)算)
=(判斷運(yùn)算的符號(hào))
=(約分到最簡(jiǎn)分式)
(2)
=(先把除法統(tǒng)一成乘法運(yùn)算)
=(分子,、分母中的多項(xiàng)式分解因式)
=
=
六、隨堂練習(xí)
計(jì)算
(1)(2)
(3)(4)
七,、課后練習(xí)
計(jì)算
(1)(2)
(3)(4)
八,、答案:
六。(1)(2)(3)(4)-y
七,。(1)(2)(3)(4)
湘教版八年級(jí)數(shù)學(xué)教案篇五
(1)知識(shí)結(jié)構(gòu)
(2)重點(diǎn),、難點(diǎn)分析
本節(jié)內(nèi)容的重點(diǎn)是線段垂直平分線定理及其逆定理。定理反映了線段垂直平分線的性質(zhì),,是證明兩條線段相等的依據(jù),;逆定理反映了線段垂直平分線的判定,是證明某點(diǎn)在某條直線上及一條直線是已知線段的垂直平分線的依據(jù),。
本節(jié)內(nèi)容的難點(diǎn)是定理及逆定理的關(guān)系,。垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反,。學(xué)生在應(yīng)用它們的時(shí)候,,容易混淆,幫助學(xué)生認(rèn)識(shí)定理及其逆定理的區(qū)別,,這是本節(jié)的難點(diǎn),。
2、 教法建議
本節(jié)課教學(xué)模式主要采用“學(xué)生主體性學(xué)習(xí)”的教學(xué)模式,。提出問題讓學(xué)生想,,設(shè)計(jì)問題讓學(xué)生做,錯(cuò)誤原因讓學(xué)生說,,方法與規(guī)律讓學(xué)生歸納,。教師的作用在于組織、點(diǎn)撥,、引導(dǎo),,促進(jìn)學(xué)生主動(dòng)探索,積極思考,,大膽想象,,總結(jié)規(guī)律,,充分發(fā)揮學(xué)生的主體作用,讓學(xué)生真正成為教學(xué)活動(dòng)的主人,。具體說明如下:
(1)參與探索發(fā)現(xiàn),領(lǐng)略知識(shí)形成過程
學(xué)生前面,,學(xué)習(xí)過線段垂直平分線的概念,,這樣由復(fù)習(xí)概念入手,順其自然提出問題:在垂直平分線上任取一點(diǎn)p,,它到線段兩端的距離有何關(guān)系,?學(xué)生會(huì)很容易得出“相等”。然后學(xué)生完成證明,,找一名學(xué)生的證明過程,,進(jìn)行投影總結(jié)。最后,,由學(xué)生將上述問題,,用文字的形式進(jìn)行歸納,即得線段垂直平分線定理,。這樣讓學(xué)生親自動(dòng)手實(shí)踐,,積極參與發(fā)現(xiàn),激發(fā)了學(xué)生的認(rèn)識(shí)沖突,,使學(xué)生克服思維和探求的惰性,,獲得鍛煉機(jī)會(huì),對(duì)定理的產(chǎn)生過程,,真正做到心領(lǐng)神會(huì),。
(2)采用“類比”的學(xué)習(xí)方法,獲取逆定理
線段垂直平分線的定理及逆定理的證明都比較簡(jiǎn)單,,學(xué)生學(xué)習(xí)一般沒有什么困難,,這一節(jié)的難點(diǎn)仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點(diǎn),,教學(xué)時(shí)采用與角的平分線的性質(zhì)定理和逆定理對(duì)照,,類比的方法進(jìn)行教學(xué),使學(xué)生進(jìn)一步認(rèn)識(shí)這兩個(gè)定理的區(qū)別和聯(lián)系,。
(3) 通過問題的解決,,讓學(xué)生學(xué)會(huì)從不同角度分析問題、解決問題,;讓學(xué)生學(xué)會(huì)引申,、變更問題,以培養(yǎng)學(xué)生發(fā)現(xiàn)問題,、提出問題的創(chuàng)造性能力,。
湘教版八年級(jí)數(shù)學(xué)教案篇六
教學(xué)目標(biāo):
1.在生活實(shí)例中認(rèn)識(shí)軸對(duì)稱圖,。
2.分析軸對(duì)稱圖形,理解軸對(duì)稱的概念,。
3. 了解兩個(gè)圖形成軸對(duì)稱性的性質(zhì),,了解軸對(duì)稱圖形的性質(zhì)。
教學(xué)重點(diǎn) 1,、 軸對(duì)稱圖形的概念;2,、探索軸對(duì)稱的性質(zhì)。
教學(xué)難點(diǎn) 1,、能夠識(shí)別軸對(duì)稱圖形并找出它的對(duì)稱軸;
2,、能運(yùn)用其性質(zhì)解答簡(jiǎn)單的幾何問題。
教學(xué)方法 啟發(fā)誘導(dǎo)法
教具準(zhǔn)備 多媒體課件
教學(xué)過程
一,、 情境導(dǎo)入
同學(xué)們,,自遠(yuǎn)古以來,對(duì)稱的形式被認(rèn)為是和諧,、美麗的.不論在自然界里還是在建筑中,,不論在藝術(shù)中還是在科學(xué)中,甚至最普通的日常生活用品中,,對(duì)稱的形式都隨處可見,,對(duì)稱給我們帶來了美的感受!而軸對(duì)稱是對(duì)稱中重要的一種,今天讓我們一起走進(jìn)軸對(duì)稱世界,,探索它的秘密吧!
從這節(jié)課開始,,我們來學(xué)習(xí)第十二章:軸對(duì)稱.今天我們來研究第一節(jié), 1.認(rèn)識(shí)生活中的軸對(duì)稱圖形,并能找出軸對(duì)稱圖形的對(duì)稱軸,。2.了解兩個(gè)圖形成軸對(duì)稱,能找出它們的對(duì)稱軸及對(duì)應(yīng)點(diǎn),。3.弄清軸對(duì)稱圖形,兩個(gè)圖形成軸對(duì)稱的區(qū)別與聯(lián)系。
湘教版八年級(jí)數(shù)學(xué)教案篇七
上節(jié)課我們認(rèn)識(shí)了什么是二次根式,,那么二次根式有什么性質(zhì)呢?本節(jié)課我們一起來學(xué)習(xí),。
二、展示目標(biāo),,自主學(xué)習(xí):
自學(xué)指導(dǎo):認(rèn)真閱讀課本第3頁——4頁內(nèi)容,,完成下列任務(wù):
1、請(qǐng)比較 與0的大小,,你得到的結(jié)論是:________________________,。
2、完成3頁“探究”中的填空,,你得到的結(jié)論是____________________,。
3、看例2是怎樣利用性質(zhì)進(jìn)行計(jì)算的。
4,、完成4頁“探究”中的填空,,你得到的結(jié)論是:____________________。
5 ,、看懂例3,,有困難可與同伴交流或問老師。
湘教版八年級(jí)數(shù)學(xué)教案篇八
1.重點(diǎn):理解分式的基本性質(zhì).
2.難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形.
3.認(rèn)知難點(diǎn)與突破方法
教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分,、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),,再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形.
湘教版八年級(jí)數(shù)學(xué)教案篇九
1.內(nèi)容
正比例函數(shù)的概念.
2.內(nèi)容解析
一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,,正比例函數(shù)是特殊的一次函數(shù),,也是初中學(xué)生接觸到的第一種函數(shù),要通過對(duì)正比例函數(shù)內(nèi)容的學(xué)習(xí),,為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),,了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗(yàn).
對(duì)正比例函數(shù)概念的學(xué)習(xí),,既要借助具體的函數(shù)進(jìn)一步加深對(duì)函數(shù)概念的理解,,即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),,另一個(gè)變量隨著它的變化而變化,,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng),,這是理解正比例函數(shù)的核心;也要加強(qiáng)對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),,即根據(jù)實(shí)際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對(duì)對(duì)應(yīng)值的比值是一定的,,等于比例系數(shù),,反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,,這是正比例函數(shù)的基本特征.
本節(jié)課主要是通過對(duì)生活中大量實(shí)際問題的分析,,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對(duì)具體函數(shù)進(jìn)行辨析,,對(duì)實(shí)際事例進(jìn)行分析,,根據(jù)已知條件寫出正比例函數(shù)的解析式.
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):正比例函數(shù)的概念.
二、目標(biāo)和目標(biāo)解析
1.目標(biāo)
(1)經(jīng)歷正比例函數(shù)概念的形成過程,,理解正比例函數(shù)的概念;
(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,,體會(huì)函數(shù)建模思想.
2.目標(biāo)解析
達(dá)成目標(biāo)(1)的標(biāo)志是:通過對(duì)實(shí)際問題的分析,知道自變量和對(duì)應(yīng)函數(shù)成正比例的特征,,能概括抽象出正比例函數(shù)的概念.
達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實(shí)際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,,將實(shí)際問題抽象為函數(shù)模型,體會(huì)函數(shù)建模思想.
三,、教學(xué)問題診斷分析
正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),,由于函數(shù)概念比較抽象,學(xué)生對(duì)函數(shù)基本概念理解未必深刻,,在對(duì)實(shí)際問題進(jìn)行分析過程中,,需進(jìn)一步強(qiáng)化對(duì)函數(shù)概念的理解:即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),,另一個(gè)變量隨著它的變化而變化,,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng);對(duì)正比例函數(shù)概念的理解關(guān)鍵是對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),,要通過大量實(shí)例分析,,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,,即函數(shù)與自變量的每一對(duì)對(duì)應(yīng)值的比值一定,,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,,歸納得出正比例函數(shù)的概念.對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度.
因此本節(jié)課的教學(xué)難點(diǎn)是:對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過程.
四、教學(xué)過程設(shè)計(jì)
1.情境引入,,初步感知
引言
上一節(jié)我們已經(jīng)學(xué)習(xí)了關(guān)于函數(shù)的最基礎(chǔ)的知識(shí),,知道了變量與函數(shù)、函數(shù)的圖象及函數(shù)的三種表示方法,,從這節(jié)課開始,,我們將重點(diǎn)研究一種最基本的具體函數(shù)——一次函數(shù),本節(jié)課先研究特殊的一次函數(shù)——正比例函數(shù).
問題1 2011年開始運(yùn)營的京滬高速鐵路全長(zhǎng)1 318km.設(shè)列車的平均速度為300km/h.考慮以下問題:
師生活動(dòng):教師引導(dǎo)學(xué)生分析問題中的數(shù)量關(guān)系,,這是典型的行程問題,,數(shù)量關(guān)系是學(xué)生熟悉的“路程=速度×?xí)r間”.
設(shè)計(jì)意圖:讓學(xué)生真切感受數(shù)學(xué)與實(shí)際的聯(lián)系,即數(shù)學(xué)理論來源于實(shí)際又服務(wù)于實(shí)際.幫助學(xué)生逐步提高將實(shí)際問題抽象為函數(shù)模型的能力,,初步體會(huì)函數(shù)建模思想.
設(shè)計(jì)意圖:由于自變量t是列車運(yùn)行時(shí)間,,作為實(shí)際問題,自變量的取值是受限制的,,應(yīng)對(duì)其取值范圍作出說明.
對(duì)問題(2)的分析解答過程讓學(xué)生回答下列問題:
追問1這個(gè)問題中兩個(gè)變量之間的對(duì)應(yīng)關(guān)系是函數(shù)關(guān)系嗎?如果是,,試說明理由.
設(shè)計(jì)意圖:讓學(xué)生感受量與量之間的函數(shù)關(guān)系,,體會(huì)函數(shù)關(guān)系蘊(yùn)涵在實(shí)際問題中,激發(fā)學(xué)生探究興趣.對(duì)理由的說明學(xué)生可能有障礙,,此時(shí)教師要引導(dǎo)學(xué)生回顧函數(shù)概念的學(xué)習(xí)過程,,用函數(shù)的概念來回答:?jiǎn)栴}中的兩個(gè)變量,當(dāng)其中的變量t變化時(shí),,另一個(gè)變量y隨著t的變化而變化,,并且對(duì)于變量t的每一個(gè)?定的值,另一個(gè)變量y都有唯一確定的值與之對(duì)應(yīng).
追問2 請(qǐng)你寫出y與t之間的函數(shù)解析式,,并分析解析式在結(jié)構(gòu)上是什么形式?
追問3 對(duì)于自變量t和函數(shù)y的每一對(duì)對(duì)應(yīng)值,,y與t的比值,
湘教版八年級(jí)數(shù)學(xué)教案篇十
學(xué)習(xí)目標(biāo):
1,、鞏固對(duì)整式乘法法則的理解,,會(huì)用法則進(jìn)行計(jì)算
2、在學(xué)生大量實(shí)踐的基礎(chǔ)上,,是學(xué)生認(rèn)識(shí)單項(xiàng)式乘以單項(xiàng)式法則是整式乘法的關(guān)鍵,,“多乘多”、“單乘多”都轉(zhuǎn)化為單項(xiàng)式相乘,。
3、在通過學(xué)生練習(xí)中,,體會(huì)運(yùn)算律是運(yùn)算的通性,,感受轉(zhuǎn)化思想。,。
4,、進(jìn)一步培養(yǎng)學(xué)生有條理的思考和表達(dá)能力。
學(xué)習(xí)重點(diǎn):整式乘法的法則運(yùn)用
學(xué)習(xí)難點(diǎn):整式乘法中學(xué)生思維能力的培養(yǎng)
學(xué)習(xí)過程
1,、學(xué)習(xí)準(zhǔn)備
1,、你能寫出整式乘法的法則嗎?試一試,。
2,、談?wù)勗谡匠朔ǖ膶W(xué)習(xí)過程中,你有什么收獲,?有什么不足,?
利用課下時(shí)間和同學(xué)交流一下,能解決嗎,?
2,、合作探究
1、練習(xí)
(1)(-5a2b)(2a2bc)(2)(-ax)(-bx3)
(3)(2x104)(6x105)(4)(x)?2x3?(-3x2)
2,、結(jié)合上面練習(xí),,談?wù)勗趩雾?xiàng)式乘單項(xiàng)式運(yùn)算中怎樣進(jìn)行計(jì)算?要注意些什么?
3,、練習(xí)
(1)(-3x)(4x2-x+1)(2)(-xy)(2x-5y-1)
(3)(2x+3)(4x+1)(4)(x+1)(x2-2x+3)
4,、結(jié)合上面練習(xí),體會(huì)單項(xiàng)式乘多項(xiàng)式,、多項(xiàng)式乘多項(xiàng)式運(yùn)算中,,都是以單項(xiàng)式乘單項(xiàng)式為基礎(chǔ)、運(yùn)用乘法分配律進(jìn)行計(jì)算,。
3,、自我測(cè)試
1、3x2?(-4xy)?(-xy)=
2,、若(mx3)?(2xn)=-8x18,則m=
3,、一個(gè)長(zhǎng)方體的長(zhǎng)、寬,、高分別為3x-4,2x和x,,它的體積是
4、若m2-2m=1,,則2m2-4m+2008的值是
5,、解方程:1-(2x+1)(x-2)=x2-(3x-1)(x+3)-11
6、當(dāng)(x2+mx+8)(x2-3x+n)展開后,,如果不含x2和x3的項(xiàng),,求(-m)3n的值。
7,、計(jì)算:(y+1)(y2-y+1)+y(1+y)(1-y),,其中y=-。
8,、(2009北京)已知x2-5x=14,(x-1)(2x-1)-(x+1)2+1的值,。
9、某公園要建如圖所示的形狀的草坪(陰影部分),,求鋪設(shè)草坪多少m2?若每平
方米草坪260元,,則為修建該草坪需投資多少元?
湘教版八年級(jí)數(shù)學(xué)教案篇十一
1.知識(shí)與技能
會(huì)應(yīng)用平方差公式進(jìn)行因式分解,,發(fā)展學(xué)生推理能力.
2.過程與方法
經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過程,,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性.
3.情感,、態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,,體會(huì)數(shù)學(xué)在實(shí)際問題中的應(yīng)用價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):利用平方差公式分解因式.
2.難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性.
3.關(guān)鍵:應(yīng)用逆向思維的方向,,演繹出平方差公式,,對(duì)公式的應(yīng)用首先要注意其特征,,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來.
教學(xué)方法
采用“問題解決”的教學(xué)方法,,讓學(xué)生在問題的牽引下,,推進(jìn)自己的思維.
教學(xué)過程
一、觀察探討,,體驗(yàn)新知
【問題牽引】
請(qǐng)同學(xué)們計(jì)算下列各式.
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的兩道題,,并踴躍上臺(tái)板演.
(1)(a+5)(a-5)=a2-52=a2-25;
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,,尋找因式分解的規(guī)律.
1.分解因式:a2-25;2.分解因式16m2-9n.
【學(xué)生活動(dòng)】從逆向思維入手,,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動(dòng)】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評(píng)析:平方差公式中的字母a,、b,,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù),、含字母的代數(shù)式(單項(xiàng)式,、多項(xiàng)式).
二、范例學(xué)習(xí),,應(yīng)用所學(xué)
【例1】把下列各式分解因式:(投影顯示或板書)
(1)x2-9y2;(2)16x4-y4;
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x).
【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,,可以使用平方差公式因式分解.
【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演.
【學(xué)生活動(dòng)】分四人小組,,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).