在日常學(xué)習(xí),、工作或生活中,,大家總少不了接觸作文或者范文吧,,通過文章可以把我們那些零零散散的思想,,聚集在一塊,。范文怎么寫才能發(fā)揮它最大的作用呢?下面是小編為大家收集的優(yōu)秀范文,,供大家參考借鑒,,希望可以幫助到有需要的朋友。
二次根式教學(xué)設(shè)計(jì)理念篇一
1,、使學(xué)生理解最簡(jiǎn)二次根式的概念,;
2、掌握把二次根式化為最簡(jiǎn)二次根式的方法,。
重點(diǎn):化二次根式為最簡(jiǎn)二次根式的方法,。
難點(diǎn):最簡(jiǎn)二次根式概念的理解。
計(jì)算:
我們?cè)倏聪旅娴膯栴}:
簡(jiǎn),,得到
從上面例子可以看出,,如果把二次根式先進(jìn)行化簡(jiǎn),會(huì)對(duì)解決問題帶來方便,。
答:
1,、被開方數(shù)的因數(shù)是整數(shù)或整式,;
2、被開方數(shù)中不含能開得盡方的因數(shù)或因式,。
滿足上面兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式,。
例1 試判斷下列各式中哪些是最簡(jiǎn)二次根式,哪些不是,?為什么,?
解
(1)不是最簡(jiǎn)二次根式。因?yàn)閍3=a2·a,,而a2可以開方,,即被開方數(shù)中有開得盡方的因式。整數(shù),。
(3)是最簡(jiǎn)二次根式,。因?yàn)楸婚_方數(shù)的因式x2+y2開不盡方,而且是整式,。
(4)是最簡(jiǎn)二次根式,。因?yàn)楸婚_方數(shù)的因式a-b開不盡方,而且是整式,。
(5)是最簡(jiǎn)二次根式,。因?yàn)楸婚_方數(shù)的因式5x開不盡方,而且是整式,。
(6)不是最簡(jiǎn)二次根式,。因?yàn)楸婚_方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22,。
指出:從(1),(2),,(6)題可以看到如下兩個(gè)結(jié)論,。
1、在二次根式的被開方數(shù)中,,只要含有分?jǐn)?shù)或小數(shù),,就不是最簡(jiǎn)二次根式;
2,、在二次根式的被開方數(shù)中的每一個(gè)因式(或因數(shù)),,如果冪的指數(shù)等于或大于2,也不是最簡(jiǎn)二次根式,。
例2 把下列各式化為最簡(jiǎn)二次根式:
分析:把被開方數(shù)分解因式或因數(shù),,再利用積的算術(shù)平方根的性質(zhì)
例3 把下列各式化成最簡(jiǎn)二次根式:
分析:題(1)的被開方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),,然后將分母有理化,,把原式化成最簡(jiǎn)二次根式。
題(2)及題(3)的被開方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個(gè)根式的商的形式,,再把分母有理化,,把原式化成最簡(jiǎn)二次根式。
通過例2,、例3,,請(qǐng)同學(xué)們總結(jié)出把二次根式化成最簡(jiǎn)二次根式的方法。
答:如果被開方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),,把它寫成分式的形式,,然后利用分母有理化化簡(jiǎn)。
如果被開方數(shù)是整式或整數(shù),,先把它分解因式或分解因數(shù),,然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡(jiǎn),。
1,、在下列各式中,是最簡(jiǎn)二次根式的式子為 [ ]的二次根式的式子有_____個(gè),。 [ ]
a,、2 b、3
c,、1 d,、0
3、把下列各式化成最簡(jiǎn)二次根式:
答案:
1,、b
2,、b
1、最簡(jiǎn)二次根式必須滿足兩個(gè)條件:
(1)被開方數(shù)的因數(shù)是整數(shù),,因式是整式,;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式。
2,、把一個(gè)式子化為最簡(jiǎn)二次根式的方法是:
(1)如果被開方數(shù)是整式或整數(shù),,先把它分解成因式(或因數(shù))的積的形式,把開得盡方的因式(或因數(shù))移到根號(hào)外,;
(2)如果被開方數(shù)含有分母,,應(yīng)去掉分母的根號(hào)。
1,、把下列各式化成最簡(jiǎn)二次根式:
2,、把下列各式化成最簡(jiǎn)二次根式:
二次根式教學(xué)設(shè)計(jì)理念篇二
1.掌握二次根式的混合運(yùn)算.
2.掌握混合運(yùn)算的應(yīng)用.
3.通過二次根式的混合運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力.
4.通過混合運(yùn)算知識(shí)拓展,,培養(yǎng)學(xué)生的探索精神
小結(jié),、歸納,、提高
1.教學(xué)重點(diǎn):二次根式的混合運(yùn)算.
2.教學(xué)難點(diǎn):混合運(yùn)算的應(yīng)用.
1課時(shí)
投影儀、膠片,、多媒體
復(fù)習(xí)小結(jié),,歸納整理,應(yīng)用提高,,以學(xué)生活動(dòng)為主
【例題】
例1 化簡(jiǎn):
(1) ,; (2) .
解:(1)
(2)
說明:在計(jì)算過程中要注意各個(gè)式子的特點(diǎn),能否約分或消項(xiàng)(第2小題)達(dá)到化簡(jiǎn)的目的,,又要善于在規(guī)則允許的情況下可變換相鄰項(xiàng)的位置,,如 ,結(jié)果為-1,,繼續(xù)運(yùn)算易出現(xiàn)符號(hào)上的差錯(cuò),,而把 先變?yōu)?,這樣 則為1,,繼續(xù)運(yùn)算可避免錯(cuò)誤.
例2 解下列方程(組):
(1)
(2)
(3)
解:(1)
.
(2)①× ,,得
③
②× ,得
④
③-④,,得
把 代入①,,得
解得 .
∴
是原方程組的解.
(3)由②,得
③
①× ,,得
④
③-④,,得
把 代入①,得
.
∴ 是原方程組的解.
例3 已知 ,, ,,求 的值.
解: .
.
, ,,
∴ .
例4 已知 ,, ,求 的值.
解: ,, .
.
(二)隨堂練習(xí)
1.教材中p206中8.
2.解不等式: .
解:
∴
.
3.已知 , ,,求 的值.
解:3. ,,或 .
.
∴
.
4.已知 , ,,求: 的值.
解 4.
.
5.已知 ,,求 的值.
解 5. .
.
6.不求方根的值比較 與 的大小.
解 6.∵
∴
∴
(三)總結(jié),、擴(kuò)展
根據(jù)已知條件,,求一個(gè)代數(shù)的值,,要注意條件或代數(shù)式的化簡(jiǎn),有時(shí)條件和要求的代數(shù)式都需要化簡(jiǎn),,當(dāng)把條件化簡(jiǎn)后,,代數(shù)式的化簡(jiǎn)要朝著條件化簡(jiǎn)的結(jié)果去化簡(jiǎn).
(四)布置作業(yè)
教材中p207b組1、3和補(bǔ)充作業(yè).
補(bǔ)充作業(yè):
1.已知 ,,求 的值.
2.已知 ,, ,求 的值.
(五)板書設(shè)計(jì)
標(biāo) 題
1.例題……
3.例題……
2.練習(xí)題
4.練習(xí)題
八,、背景知識(shí)與課外閱讀
二次根式的混和運(yùn)算方法和順序
1.方法 (1)應(yīng)用二次根式乘法,、除法和加減法運(yùn)算法則.
(2)在實(shí)數(shù)范圍內(nèi)運(yùn)算律仍適用.
(3)二次根式的乘法,與多項(xiàng)式的乘法相類似,,遇運(yùn)用多項(xiàng)式乘法公式時(shí),,也可以運(yùn)用乘法公式.
2.順序 先乘方、后乘除,,最后加減,,有括號(hào)的先算括號(hào)內(nèi)的數(shù).
二次根式教學(xué)設(shè)計(jì)理念篇三
教學(xué)準(zhǔn)備
1.教學(xué)目標(biāo)
(1)學(xué)生能用二次根式表示實(shí)際問題中的數(shù)量和數(shù)量關(guān)系,體會(huì)研究二次根式的必要性.
(2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,,知道被開方數(shù)必須是非負(fù)數(shù)的理由,,知道二次根式本身是一個(gè)非負(fù)數(shù),會(huì)求二次根式中被開方數(shù)字母的取值范圍. 2.教學(xué)重點(diǎn)/難點(diǎn)
理解二次根式的雙重非負(fù)性.
3.教學(xué)用具
4.標(biāo)簽
教學(xué)過程
1.創(chuàng)設(shè)情境,,提出問題
問題1你能用帶有根號(hào)的的式子填空嗎,?
(1)面積為3 的正方形的邊長(zhǎng)為_______,面積為s 的正方形的邊長(zhǎng)為_______.
(2)一個(gè)長(zhǎng)方形圍欄,,長(zhǎng)是寬的2 倍,,面積為130m?,則它的寬為______m.
(3)一個(gè)物體從高處自由落下,,落到地面所用的時(shí)間 t(單位:s)與開始落下的高度h(單位:m)滿足關(guān)系 h =5t?,,如果用含有h 的式子表示 t ,則t= _____.
師生活動(dòng):學(xué)生獨(dú)立完成上述問題,,用算術(shù)平方根表示結(jié)果,,教師進(jìn)行適當(dāng)引導(dǎo)和評(píng)價(jià).
【設(shè)計(jì)意圖】讓學(xué)生在填空過程中初步感知二次根式與實(shí)際生活的緊密聯(lián)系,體會(huì)研究二次根式的必要性.
問題2 上面得到的式子
分別表示什么意義,?它們有什么共同特征,?
師生活動(dòng):教師引導(dǎo)學(xué)生說出各式的意義,概括它們的共同特征:都表示一個(gè)非負(fù)數(shù)(包括字母或式子表示的非負(fù)數(shù))的算術(shù)平方根.
【設(shè)計(jì)意圖】為概括二次根式的概念作鋪墊.
2.抽象概括,,形成概念
問題3 你能用一個(gè)式子表示一個(gè)非負(fù)數(shù)的算術(shù)平方根嗎,?
師生活動(dòng):學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,,我們把形如
【設(shè)計(jì)意圖】讓學(xué)生體會(huì)由特殊到一般的過程,,培養(yǎng)學(xué)生的概括能力.
追問:在二次根式的概念中,,為什么要強(qiáng)調(diào)“a≥0”?
師生活動(dòng):教師引導(dǎo)學(xué)生討論,,知道二次根式被開方數(shù)必須是非負(fù)數(shù)的理由.
【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對(duì)二次根式被開方數(shù)必須是非負(fù)數(shù)的理解. 3.辨析概念,,應(yīng)用鞏固
問題4你能比較與0的大小嗎?
4.綜合運(yùn)用,,鞏固提高
練習(xí)1 完成教科書第3頁(yè)的練習(xí).
練習(xí)2 當(dāng)x 是什么實(shí)數(shù)時(shí),,下列各式有意義
課堂小結(jié)
教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請(qǐng)學(xué)生回答以下問題.
(1)本節(jié)課你學(xué)到了哪一類新的式子,?
(2)二次根式有意義的條件是什么,?二次根式的值的范圍是什么?
(3)二次根式與算術(shù)平方根有什么關(guān)系,?
課后習(xí)題
二次根式教學(xué)設(shè)計(jì)理念篇四
知識(shí)與技能:
1,、理解二次根式的概念。
2,、理解二次根式的基本性質(zhì),。
過程與方法:
能運(yùn)用二次根式的概念解決有關(guān)問題、
情感態(tài)度與價(jià)值觀:
經(jīng)歷觀察,、比較,、總結(jié)和應(yīng)用等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿了探索性和創(chuàng)造性,,體驗(yàn)發(fā)現(xiàn)的快樂,,并提高應(yīng)用的意識(shí)。
學(xué)生已經(jīng)學(xué)習(xí)了“整式”,、“平方根”,、“算術(shù)平方根”等知識(shí),已經(jīng)具備了學(xué)習(xí)二次根式的知識(shí)基礎(chǔ)和心理基礎(chǔ),,但學(xué)生剛認(rèn)識(shí)二次根式,,學(xué)習(xí)將有一定難度。學(xué)生知識(shí)障礙點(diǎn)是二次根式的概念及運(yùn)算,,如果學(xué)生在此不能很好地理解和正確的認(rèn)知,,將對(duì)今后學(xué)習(xí)產(chǎn)生很大影響,所以要求學(xué)生積極探究,、思考,,及時(shí)加以鞏固,克服學(xué)習(xí)困難,,真正“學(xué)會(huì)”。
1,、教學(xué)重點(diǎn)為了解二次根式的概念,,知道被開方數(shù)必須是非負(fù)數(shù)的理由,,知道二次根式本身是一個(gè)非負(fù)數(shù),會(huì)求二次根式中被開方數(shù)字母的取值范圍.
2,、教學(xué)難點(diǎn)為:理解二次根式的雙重非負(fù)性,、
活動(dòng)1【導(dǎo)入】活動(dòng)一
問題1你能用帶有根號(hào)的的式子填空嗎?
(1)面積為3的正方形的邊長(zhǎng)為_______,,面積為s的正方形的邊長(zhǎng)為_______.
(2)一個(gè)長(zhǎng)方形圍欄,,長(zhǎng)是寬的2倍,面積為130m,?,,則它的寬為______m.
(3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間t(單位:s)與開始落下的高度h(單位:m)滿足關(guān)系h =5t,?,,如果用含有h的式子表示t,則t= _____.
師生活動(dòng):學(xué)生獨(dú)立完成上述問題,,用算術(shù)平方根表示結(jié)果,,教師進(jìn)行適當(dāng)引導(dǎo)和評(píng)價(jià)。
問題2上面得到的式子√3,,√s,,√h5分別表示什么意義?它們有什么共同特征,?
活動(dòng)2【活動(dòng)】講授
問題3你能用一個(gè)式子表示一個(gè)非負(fù)數(shù)的算術(shù)平方根嗎,?
師生活動(dòng):學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,,我們把形如√a(a≥0)的式子叫做二次根式,,“√ ”稱為二次根號(hào).
追問:在二次根式的概念中,為什么要強(qiáng)調(diào)“a≥0”,?
師生活動(dòng):教師引導(dǎo)學(xué)生討論,,知道二次根式被開方數(shù)必須是非負(fù)數(shù)的理由.
活動(dòng)3【講授】辨析概念
例1當(dāng)x是怎樣的實(shí)數(shù)時(shí),√x2在實(shí)數(shù)范圍內(nèi)有意義,?
師生活動(dòng):引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,,鞏固學(xué)生對(duì)二次根式的被開方數(shù)為非負(fù)數(shù)的理解.
例2當(dāng)x是怎樣的實(shí)數(shù)時(shí),√x2在實(shí)數(shù)范圍內(nèi)有意義,?√x3呢,?
師生活動(dòng):先讓學(xué)生獨(dú)立思考,再追問.
問題4你能比較√a與0的大小嗎,?
師生活動(dòng):通過分a> 0和a= 0這兩種情況的討論,,比較√a與0的大小,引導(dǎo)學(xué)生得出√a ≥0的結(jié)論,強(qiáng)化學(xué)生對(duì)二次根式本身為非負(fù)數(shù)的理解,,
活動(dòng)4【練習(xí)】練習(xí)
練習(xí)當(dāng)x是什么實(shí)數(shù)時(shí),,下列各式有意義、
(1)√x2,;(2)√34x(3)√x2√2x,;(4)√xx1 、
練習(xí)1完成教科書第3頁(yè)的練習(xí),、
練習(xí)2當(dāng)x是什么實(shí)數(shù)時(shí),,下列各式有意義、
(1)√x2,;(2)√34x(3)√x2√2x,;(4)√xx1 、
練習(xí)1完成教科書第3頁(yè)的練習(xí),、
練習(xí)2當(dāng)x是什么實(shí)數(shù)時(shí),,下列各式有意義、
(1)√x2,;(2)√34x(3)√x2√2x,;(4)√xx1 、
練習(xí)1完成教科書第3頁(yè)的練習(xí),、
練習(xí)2當(dāng)x是什么實(shí)數(shù)時(shí),,下列各式有意義、
(1)√x2,;(2)√34x(3)√x2√2x,;(4)√xx1 、
活動(dòng)5【活動(dòng)】小結(jié)
小結(jié):
1,、二次根式的意義:√a(a≥0)
2,、二次根式的性質(zhì):
性質(zhì)1 √a2 = a(a≥0)
活動(dòng)6【測(cè)試】目標(biāo)檢測(cè)
1、下列各式中,,一定是二次根式的是()
a,、√a b√3 、 c√x2+1 ,、 d,、3√5
2、當(dāng)x取什么時(shí),,二次根式√3x無意義.
3,、當(dāng)x取何值時(shí),二次根式√x+3有最小值,,其最小值是.
4,、對(duì)于√3a1a3,小紅根據(jù)被開方數(shù)是非負(fù)數(shù),得出a的取值范圍是a ≥ 13.小慧認(rèn)為還應(yīng)考慮分母不為0的情況.你認(rèn)為小慧的想法正確嗎,?試求出a的取值范圍.
活動(dòng)7【作業(yè)】布置作業(yè)
教科書習(xí)題16,、1第1,3,,5,7,,10題.
二次根式教學(xué)設(shè)計(jì)理念篇五
教學(xué)目的
1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,,并會(huì)應(yīng)用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;
2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),,把一個(gè)二次根式化為最簡(jiǎn)二次根式,。
教學(xué)重點(diǎn)
最簡(jiǎn)二次根式的定義。
教學(xué)難點(diǎn)
一個(gè)二次根式化成最簡(jiǎn)二次根式的方法,。
教學(xué)過程
1.把下列各根式化簡(jiǎn),,并說出化簡(jiǎn)的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡(jiǎn)前后的根式,被開方數(shù)有什么不同,?
化簡(jiǎn)前的被開方數(shù)有分?jǐn)?shù),,分式;化簡(jiǎn)后的被開方數(shù)都是整數(shù)或整式,,且被開方數(shù)中開得盡方的因數(shù)或因式,,被移到根號(hào)外。
3.啟發(fā)學(xué)生回答:
二次根式,,請(qǐng)同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式,?
1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:
滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),,因式是整式,;
(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
最簡(jiǎn)二次根式定義中第(1)條說明被開方數(shù)不含有分母,;分母是1的例外,。第(2)條說明被開方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式,。
2.練習(xí):
下列各根式是否為最簡(jiǎn)二次根式,,不是最簡(jiǎn)二次根式的說明原因:
3.例題:
例1 把下列各式化成最簡(jiǎn)二次根式:
例2 把下列各式化成最簡(jiǎn)二次根式:
4.總結(jié)
把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法,?
當(dāng)被開方數(shù)為整數(shù)或整式時(shí),,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),,把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去,。
當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,,然后分子,、分母再分別化簡(jiǎn)。
1.把下列各式化成最簡(jiǎn)二次根式:
2.判斷下列各根式,,哪些是最簡(jiǎn)二次根式,?哪些不是最簡(jiǎn)二次根式?如果不是,,把它化成最簡(jiǎn)二次根式,。
二次根式教學(xué)設(shè)計(jì)理念篇六
(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);
(2)會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算;
(3) 理解最簡(jiǎn)二次根式的概念
本節(jié)內(nèi)容主要是在做二次根式的`除法運(yùn)算時(shí),,分母含根號(hào)的處理方式上,,學(xué)生可能會(huì)出現(xiàn)困難或容易失誤,在除法運(yùn)算中,,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,,也可以先利用分式的性質(zhì),去掉分母中的根號(hào),,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行,。二次根式的除法與分式的運(yùn)算類似,如果分子,、分母中含有相同的因式,,可以直接約去,以簡(jiǎn)化運(yùn)算,。教學(xué)中不能只是列舉題型,,應(yīng)以各級(jí)各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,,估計(jì)運(yùn)算結(jié)果,,明確運(yùn)算方向。
重點(diǎn):二次根式的乘法法則與積的算術(shù)平方根的性質(zhì).
難點(diǎn):二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用,。
4,。1 第一學(xué)時(shí)
問題1 二次根式的乘法法則是什么內(nèi)容?化簡(jiǎn)二次根式的一般步驟怎樣,?
師生活動(dòng) 學(xué)生回答,。
【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,,學(xué)生可以探究除法法則.
2.觀察思考,,理解法則
問題2 教材第8頁(yè)“探究”欄目,計(jì)算結(jié)果如何,?有何規(guī)律,?
師生活動(dòng) 學(xué)生回答,,給出正確答案后,教師引導(dǎo)學(xué)生思考,,并總結(jié)二次根式除法法則:,。
問題3 對(duì)比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化,?
師生活動(dòng) 學(xué)生思考,,回答。學(xué)生能說明根據(jù)分?jǐn)?shù)的意義知道,,分母不為零就可以了,。
【設(shè)計(jì)意圖】學(xué)生通過自主探究,采用類比的方法,,得出二次根式的除法法則后,要明確字母的取值范圍,,以免在處理更為復(fù)雜的二次根式的運(yùn)算時(shí)出現(xiàn)錯(cuò)誤,。
問題4 對(duì)例題的運(yùn)算你有什么看法?是如何進(jìn)行的,?
師生活動(dòng) 學(xué)生利用法則直接運(yùn)算,,一般根號(hào)下不含分母和開得盡方的因數(shù)。
【設(shè)計(jì)意圖】讓學(xué)生初步利用二次根式的性質(zhì),、乘除法法則進(jìn)行簡(jiǎn)單的運(yùn)算,。
問題5 對(duì)比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒有類似性質(zhì),?
師生活動(dòng) 學(xué)生類比地發(fā)現(xiàn),,商的算術(shù)平方根等于算術(shù)平方根的商,即 ,。利用該性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn),。
問題2 教材第8頁(yè)“探究”欄目,計(jì)算結(jié)果如何,?有何規(guī)律,?
師生活動(dòng) 學(xué)生回答,給出正確答案后,,教師引導(dǎo)學(xué)生思考,,并總結(jié)二次根式除法法則:。
問題3 對(duì)比乘法法則里字母的取值范圍,,除法法則里字母的取值范圍有何變化,?
師生活動(dòng) 學(xué)生思考,回答,。學(xué)生能說明根據(jù)分?jǐn)?shù)的意義知道,,分母不為零就可以了,。
【設(shè)計(jì)意圖】學(xué)生通過自主探究,采用類比的方法,,得出二次根式的除法法則后,,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運(yùn)算時(shí)出現(xiàn)錯(cuò)誤,。
問題4 對(duì)例題的運(yùn)算你有什么看法,?是如何進(jìn)行的?
師生活動(dòng) 學(xué)生利用法則直接運(yùn)算,,一般根號(hào)下不含分母和開得盡方的因數(shù),。
【設(shè)計(jì)意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進(jìn)行簡(jiǎn)單的運(yùn)算,。
問題5 對(duì)比積的算術(shù)平方根的性質(zhì),,商的算術(shù)平方根有沒有類似性質(zhì)?
師生活動(dòng) 學(xué)生類比地發(fā)現(xiàn),,商的算術(shù)平方根等于算術(shù)平方根的商,,即 。利用該性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn),。
例1 計(jì)算: (1) ,; (2) ; (3) ,。
師生活動(dòng) 提問:你有幾種方法去掉分母中的根號(hào),?去分母的依據(jù)分別是什么?
再提問:第(2)用什么方法計(jì)算更簡(jiǎn)捷,?第(3)題根號(hào)下含字母在移出根號(hào)時(shí)應(yīng)注意什么,?
【設(shè)計(jì)意圖】通過具體問題,讓學(xué)生在實(shí)際運(yùn)算中培養(yǎng)運(yùn)算能力,,訓(xùn)練運(yùn)算技能,,
問題5 你能從例題的解答過程中,總結(jié)一下二次根式的運(yùn)算結(jié)果有什么特征嗎,?
師生活動(dòng) 學(xué)生總結(jié),,師生共同補(bǔ)充、完善,。要總結(jié)出:
(1)這些根式的被開方數(shù)都不含分母,;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式;
(3)分母中不含根號(hào),;
【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),,提出最簡(jiǎn)二次根式的概念,要強(qiáng)調(diào),,在二次根式的運(yùn)算中,,一般要把最后結(jié)果化為最簡(jiǎn)二次根式,。
問題6 課件展示一組二次根式的計(jì)算、化簡(jiǎn)題,。
【設(shè)計(jì)意圖】讓學(xué)生用總結(jié)出的結(jié)論進(jìn)行二次根式的運(yùn)算,。
例2 教材第9頁(yè)例7。
師生活動(dòng) 提問 本題是以長(zhǎng)方形面積為背景的數(shù)學(xué)問題,,二次根式的除法運(yùn)算在此發(fā)揮什么作用,?
再提問 章引言中的問題現(xiàn)在能解決了嗎?
【設(shè)計(jì)意圖】鞏固性練習(xí),,同時(shí)培養(yǎng)學(xué)生應(yīng)用二次根式的乘除運(yùn)算法則解決實(shí)際問題的能力,。
1.在 、 ,、 中,,最簡(jiǎn)二次根式為 。
【設(shè)計(jì)意圖】考查對(duì)最簡(jiǎn)二次根式的概念的理解,。
2.化簡(jiǎn)下列各式為最簡(jiǎn)二次根式: ,; 。
【設(shè)計(jì)意圖】復(fù)習(xí)二次根式的運(yùn)算法則和運(yùn)算性質(zhì),。鼓勵(lì)學(xué)生用不同方法進(jìn)行計(jì)算。對(duì)于分母含二次根式的處理,,要結(jié)合整式的乘法公式進(jìn)行計(jì)算,。
3.化簡(jiǎn):(1) ; (2) ,。
【設(shè)計(jì)意圖】綜合運(yùn)用二次根式的概念,、性質(zhì)和運(yùn)算法則進(jìn)行二次根式的運(yùn)算。
教科書第10頁(yè)練習(xí)第1,,2,,3題;
教科書習(xí)題16,。2第10,,11題。
二次根式教學(xué)設(shè)計(jì)理念篇七
1,、通過二次根式混合運(yùn)算的學(xué)習(xí),,進(jìn)一步了解二次根式運(yùn)算法則,知道二次根式混合運(yùn)算順序,,會(huì)進(jìn)行二次根式的混合運(yùn)算,。
2、在進(jìn)行二次根式混合運(yùn)算的過程中,,體會(huì)類比思想,,逐步養(yǎng)成認(rèn)真仔細(xì)的學(xué)習(xí)品質(zhì),,進(jìn)一步提高運(yùn)算能力。
教學(xué)重點(diǎn):二次根式混合運(yùn)算算理的理解,。
教學(xué)難點(diǎn):類比整式運(yùn)算準(zhǔn)確快速的進(jìn)行二次根式的混合運(yùn)算,。
教學(xué)過程:
《二次根式混合運(yùn)算習(xí)題課》教學(xué)設(shè)計(jì)-楊桂花
(學(xué)生完成練習(xí)提綱,可以討論,老師做必要的板書準(zhǔn)備,然后巡回指導(dǎo),了解情況、)
練習(xí)提綱:《二次根式混合運(yùn)算習(xí)題課》教學(xué)設(shè)計(jì)-楊桂花
1,、學(xué)生匯報(bào)解題過程,生說師寫;
2,、發(fā)動(dòng)其他學(xué)生評(píng)價(jià)補(bǔ)充完善;
3、師畫龍點(diǎn)睛強(qiáng)調(diào):
(1)二次根式混合運(yùn)算的運(yùn)算順序跟有理數(shù)運(yùn)算順序一樣,,先乘方,,再乘除,最后加減,。
(2)二次根式混合運(yùn)算與整式的運(yùn)算有很多相似之處,,因此可類比整式的運(yùn)算進(jìn)行二次根式的混合運(yùn)算。
(先讓學(xué)生獨(dú)立完成,,老師做必要的板書準(zhǔn)備后巡回指導(dǎo),,了解情況; 然后讓有一定問題的學(xué)生匯報(bào)展示,,發(fā)動(dòng)學(xué)生評(píng)價(jià)完善,,老師強(qiáng)調(diào)關(guān)鍵地方,總結(jié)思想方法,。)
《二次根式混合運(yùn)算習(xí)題課》教學(xué)設(shè)計(jì)-楊桂花
本節(jié)課你有哪些收獲,?還有什么要提醒同學(xué)們注意的。(學(xué)生總結(jié),,百花齊放,,老師不做限定,沒說到的,,老師補(bǔ)充,。)
《二次根式混合運(yùn)算習(xí)題課》教學(xué)設(shè)計(jì)-楊桂花
二次根式教學(xué)設(shè)計(jì)理念篇八
是商的二次根式的性質(zhì)及利用性質(zhì)進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算,利用分母有理化化簡(jiǎn),。商的算術(shù)平方根的性質(zhì)是本節(jié)的主線,,學(xué)生掌握性質(zhì)在二次根使得化簡(jiǎn)和運(yùn)算的運(yùn)用是關(guān)鍵,從化簡(jiǎn)與運(yùn)算由引出初中重要的內(nèi)容之一分母有理化,,分母有理化的理解決定了最簡(jiǎn)二次根式化簡(jiǎn)的掌握,。
教學(xué)難點(diǎn)是與商的算術(shù)平方根的關(guān)系及應(yīng)用。與乘法既有聯(lián)系又有區(qū)別,,強(qiáng)調(diào)根式除法結(jié)果的一般形式,,避免分母上含有根號(hào)。由于分母有理化難度和復(fù)雜性大,,要讓學(xué)生首先理解分母有理化的意義及計(jì)算結(jié)果形式,。
1,。 本節(jié)內(nèi)容是在有積的二次根式性質(zhì)的基礎(chǔ)后學(xué)習(xí),因此可以采取學(xué)生自主探索學(xué)習(xí)的模式,,通過前一節(jié)的復(fù)習(xí),,讓學(xué)生通過具體實(shí)例再結(jié)合積的性質(zhì),對(duì)比,、歸納得到商的二次根式的性質(zhì),。教師在此過程當(dāng)中給與適當(dāng)?shù)闹笇?dǎo),提出問題讓學(xué)生有一定的探索方向,。
2,。 本節(jié)內(nèi)容可以分為三課時(shí),第一課時(shí)討論商的算術(shù)平方根的性質(zhì),,并運(yùn)用這一性質(zhì)化簡(jiǎn)較簡(jiǎn)單的二次根式(被開方數(shù)的分母可以開得盡方的二次根式),;第二課時(shí)討論法則,并運(yùn)用這一法則進(jìn)行簡(jiǎn)單的運(yùn)算以及二次根式的乘除混合運(yùn)算,,這一課時(shí)運(yùn)算結(jié)果不包括根號(hào)出現(xiàn)內(nèi)出現(xiàn)分式或分?jǐn)?shù)的情況,;第三課時(shí)討論分母有理化的概念及方法,并進(jìn)行二次根式的乘除法運(yùn)算,,把運(yùn)算結(jié)果分母有理化,。這樣安排使內(nèi)容由淺入深,各部分相互聯(lián)系,,因此及彼,,層層展開。
3,。 引導(dǎo)學(xué)生思考“想一想”中的內(nèi)容,培養(yǎng)學(xué)生思維的深刻性,,教師組織學(xué)生思考,、討論過程當(dāng)中,鼓勵(lì)學(xué)生大膽猜想,,積極探索,,運(yùn)用類比、歸納和從特殊到一般的思考方法激發(fā)學(xué)生創(chuàng)造性的思維,。
教學(xué)設(shè)計(jì)示例
1.掌握商的算術(shù)平方根的性質(zhì),,能利用性質(zhì)進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算;
2.會(huì)進(jìn)行簡(jiǎn)單的運(yùn)算;
3.使學(xué)生掌握分母有理化概念,,并能利用分母有理化解決二次根式的化簡(jiǎn)及近似計(jì)算問題,;
4。 培養(yǎng)學(xué)生利用公式進(jìn)行化簡(jiǎn)與計(jì)算的能力,;
5,。 通過二次根式公式的引入過程,,滲透從特殊到一般的歸納方法,提高學(xué)生的歸納總結(jié)能力,;
6,。 通過分母有理化的教學(xué),滲透數(shù)學(xué)的簡(jiǎn)潔性,。
1.重點(diǎn):會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡(jiǎn),,會(huì)進(jìn)行簡(jiǎn)單的運(yùn)算,還要使學(xué)生掌握采用分母有理化的方法進(jìn)行.
2.難點(diǎn):與商的算術(shù)平方根的關(guān)系及應(yīng)用.
從特殊到一般總結(jié)歸納的方法以及類比的方法,,在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上本小節(jié)
內(nèi)容可引導(dǎo)學(xué)生自學(xué),,進(jìn)行總結(jié)對(duì)比.
利用投影儀.
(一) 引入新課
學(xué)生回憶及得算數(shù)平方根和性質(zhì): (a≥0,b≥0)是用什么樣的方法引出的,?(上述積的算術(shù)平方根的性質(zhì)是由具體例子引出的.)
學(xué)生觀察下面的例子,,并計(jì)算:
由學(xué)生總結(jié)上面兩個(gè)式的關(guān)系得:
類似地,每個(gè)同學(xué)再舉一個(gè)例子,,然后由這些特殊的例子,,得出:
(二)新課
商的算術(shù)平方根.
一般地,有 (a≥0,,b>0)
商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.
讓學(xué)生討論這個(gè)式子成立的條件是什么,?a≥0,b>0,,對(duì)于為什么b>0,,要使學(xué)生通過討論明確,因?yàn)閎=0時(shí)分母為0,,沒有意義.
引導(dǎo)學(xué)生從運(yùn)算順序看,,等號(hào)左邊是將非負(fù)數(shù)a除以正數(shù)b求商,再開方求商的算術(shù)平方根,,等號(hào)右邊是先分別求被除數(shù),、除數(shù)的算術(shù)平方根,然后再求兩個(gè)算術(shù)平方根的商,,根據(jù)商的算術(shù)平方根的性質(zhì)可以進(jìn)行簡(jiǎn)單的二次根式的化簡(jiǎn)與運(yùn)算.
例1 化簡(jiǎn):
(1) ,; (2) ; (3) ,;
解∶(1)
(2)
(3)
說明:如果被開方數(shù)是帶分?jǐn)?shù),,在運(yùn)算時(shí),一般先化成假分?jǐn)?shù),;本節(jié)根號(hào)下的字母均為正數(shù),。
例2 化簡(jiǎn):
(1) ; (2) ;
解:(1)
(2)
讓學(xué)生觀察例題中分母的特點(diǎn),,然后提出,, 的問題怎樣解決?
再總結(jié):這一小節(jié)開始講的二次根式的化簡(jiǎn),,只限于所得結(jié)果的式子中分母可以完全開的盡方的情況,, 的問題,我們將在今后的學(xué)習(xí)中解決,。
學(xué)生討論本節(jié)課所學(xué)內(nèi)容,,并進(jìn)行小結(jié).
(三)小結(jié)
1.商的算術(shù)平方根的性質(zhì).(注意公式成立的條件)
2.會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡(jiǎn)單的二次根式的化簡(jiǎn).
(四)練習(xí)
1.化簡(jiǎn):
(1) ; (2) ,; (3) ,。
2.化簡(jiǎn):
(1) ; (2) ,; (3)
教材p.183習(xí)題11.3,;a組1.
二次根式教學(xué)設(shè)計(jì)理念篇九
(一)知識(shí)與技能:
1.了解二次根式的概念,會(huì)確定二次根式成立的條件,。
2.會(huì)用二次根式性質(zhì)進(jìn)行有關(guān)計(jì)算,。
3.
了解逆用公式在實(shí)數(shù)范圍內(nèi)因式分解。
(二)過程與方法:體驗(yàn)性質(zhì)的推導(dǎo)過程,,感受由特殊到一般的方法,。
(三)情感態(tài)度:激發(fā)對(duì)數(shù)學(xué)的興趣。
二次根式成立的條件,,雙重非負(fù)性,;
用性質(zhì)進(jìn)行計(jì)算。
性質(zhì)的逆用,。
1.什么叫二次根式,?
2.下列各式是二次根式,求式子中的字母所滿足的條件:
(3)∵x取任何值都有2x2≥0,,所以2x2+1>0,,故x的取值為任意實(shí)數(shù).
上節(jié)課我們已經(jīng)學(xué)習(xí)了二次根式的定義,并了解了第一個(gè)簡(jiǎn)單性質(zhì)
我們知道,,正數(shù)a有兩個(gè)平方根,,分別記作零的平方根是零,。引導(dǎo)學(xué)生總結(jié)出,,其中,就是一個(gè)非負(fù)數(shù)a的算術(shù)平方根,。將符號(hào)“”看作開平方求算術(shù)平方根的運(yùn)算,,看作將一個(gè)數(shù)進(jìn)行平方的運(yùn)算,而開平方運(yùn)算和平方運(yùn)算是互為逆運(yùn)算,因而有:
這里需要注意的是公式成立的條件是a≥0,,提問學(xué)生,,a可以代表一個(gè)代數(shù)式嗎?
請(qǐng)分析:引導(dǎo)學(xué)生答如時(shí)才成立,。時(shí)才成立,,即a取任意實(shí)數(shù)時(shí)都成立。我們知道如果我們把,,同學(xué)們想一想是否就可以把任何一個(gè)非負(fù)數(shù)寫成一個(gè)數(shù)的平方形式了.
例1
計(jì)算:
分析:這個(gè)例題中的四個(gè)小題,,主要是運(yùn)用公式。其中(2),、(3),、(4)題又運(yùn)用了整式乘除中學(xué)習(xí)的積的冪的運(yùn)算性質(zhì).結(jié)合第(2)小題中的,說明,,這與帶分?jǐn)?shù),。因此,以后遇到,,應(yīng)寫成,,而不宜寫成。
例2
把下列非負(fù)數(shù)寫成一個(gè)數(shù)的平方的形式:
(1)5,;
(2)11,;
(3)1.6;
(4)0.35.
例3
把下列各式寫成平方差的形式,,再分解因式:
(1)4x2-1,;(2)a4-9;
(3)3a2-10,;(4)a4-6a2+9.
解:(1)4x2-1
=(2x)2-12
=(2x+1)(2x-1).
(2)a4-9
=(a2)2-32
=(a2+3)(a2-3)
(3)3a2-10
(4)a4-6a2+32
=(a2)2-6a2+32
=(a2-3)2
1.繼續(xù)鞏固二次根式的定義,,及二次根式中被開方數(shù)的取值范圍問題.
2.關(guān)于公式的應(yīng)用。
(1)經(jīng)常用于乘法的運(yùn)算中.
(2)可以把任何一個(gè)非負(fù)數(shù)寫成一個(gè)數(shù)的平方的形式,,解決在實(shí)數(shù)范圍內(nèi)因式分解等方面的問題.
練習(xí):
1.填空
注意第(4)題需有2m≥0,,m≥0,又需有-3m≥0,,即m≤0,,故m=0.
2.實(shí)數(shù)a、b在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如下圖所示:
分析:通過本題滲透數(shù)形結(jié)合的思想,,進(jìn)一步鞏固二次根式的定義,、性質(zhì),引導(dǎo)學(xué)生分析:由于a<0,,b>0,,且|a|>|b|.
3.計(jì)算
教材p.172習(xí)題11.1;a組2、3,;b組2.
補(bǔ)充作業(yè):
下列各式中的字母滿足什么條件時(shí),,才能使該式成為二次根式?
分析:要使這些式成為二次根式,,只要被開方式是非負(fù)數(shù)即可,,啟發(fā)學(xué)生分析如下:
(1)由-|a-2b|≥0,得a-2b≤0,,
但根據(jù)絕對(duì)值的性質(zhì),,有|a-2b|≥0,
∴
|a-2b|=0,,即a-2b=0,,得a=2b.
(2)由(-m2-1)(m-n)≥0,-(m2+1)(m-n)≥0
∴
(m2+1)(m-n)≤0,,又m2+1>0,,
∴
m-n≤0,即m≤n.
二次根式教學(xué)設(shè)計(jì)理念篇十
1.能用二次根式表示實(shí)際問題中的數(shù)量及數(shù)量關(guān)系,,體會(huì)研究二次根式的必要性,;(難點(diǎn))
2.能根據(jù)算術(shù)平方根的意義了解二次根式的概念及性質(zhì),會(huì)求二次根式中被開方數(shù)中字母的取值范圍.(重點(diǎn))
問題1:你能用帶有根號(hào)的式子填空嗎,?
(1)面積為3的正方形的邊長(zhǎng)為________,,面積為s的正方形的邊長(zhǎng)為________.
(2)一個(gè)長(zhǎng)方形圍欄,長(zhǎng)是寬的2倍,,面積為130m2,,則它的寬為________m.
(3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間t(單位:s)與落下的高度h(單位:m)滿足關(guān)系h=5t2,,如果用含有h的式子表示t,,則t=______.
問題2:上面得到的式子,,,,,分別表示什么意義?它們有什么共同特征,?
探究點(diǎn)一:二次根式的定義
下列各式中,,哪些是二次根式,哪些不是二次根式,?
(1),;(2);(3),;
(4),;(5);(6)(x≤3),;
(7)(x≥0),;(8);(9),;
(10)(ab≥0).
解析:要判斷一個(gè)根式是不是二次根式,,一是看根指數(shù)是不是2,二是看被開方數(shù)是不是非負(fù)數(shù).
解:因?yàn)?,,,=?x≤3),,,(ab≥0)中的根指數(shù)都是2,,且被開方數(shù)為非負(fù)數(shù),所以都是二次根式.的根指數(shù)不是2,,,,(x≥0),的被開方數(shù)小于0,,所以不是二次根式.
方法總結(jié):判斷一個(gè)式子是不是二次根式,,要看所給的式子是否具備以下條件:(1)帶二次根號(hào)“”;(2)被開方數(shù)是非負(fù)數(shù).
探究點(diǎn)二:二次根式有意義的條件
【類型一】 根據(jù)二次根式有意義求字母的取值范圍
求使下列式子有意義的x的取值范圍.
(1),;(2),;(3).
解析:根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于或等于0且分母不等于0,,列不等式(組)求解.
解:(1)由題意得4-3x>0,,解得x<.當(dāng)x<時(shí),有意義,;
(2)由題意得解得x≤3且x≠2.當(dāng)x≤3且x≠2時(shí),,有意義;
(3)由題意得解得x≥-5且x≠0.當(dāng)x≥-5且x≠0時(shí),,有意義.
方法總結(jié):含二次根式的式子有意義的條件:
(1)如果一個(gè)式子中含有多個(gè)二次根式,,那么它們有意義的條件是各個(gè)二次根式中的被開方數(shù)都必須是非負(fù)數(shù);(2)如果所給式子中含有分母,,則除了保證二次根式中的被開方數(shù)為非負(fù)數(shù)外,,還必須保證分母不為零.
【類型二】 利用二次根式的非負(fù)性求解
(1)已知a、b滿足+|b-|=0,,解關(guān)于x的方程(a+2)x+b2=a-1,;
(2)已知x、y都是實(shí)數(shù),,且y=++4,,求yx的平方根.
解析:(1)根據(jù)二次根式的非負(fù)性和絕對(duì)值的非負(fù)性求解即可,;(2)根據(jù)二次根式的非負(fù)性即可求得x的值,進(jìn)而求得y的值,,進(jìn)而可求出yx的平方根.
解:(1)根據(jù)題意得解得則(a+2)x+b2=a-1,,即-2x+3=-5,解得x=4,;
(2)根據(jù)題意得解得x=3.則y=4,,故yx=43=64,±=±8,,∴yx的平方根為±8.
方法總結(jié):二次根式和絕對(duì)值都具有非負(fù)性,,幾個(gè)非負(fù)數(shù)的和為0,這幾個(gè)非負(fù)數(shù)都為0.
探究點(diǎn)三:和二次根式有關(guān)的規(guī)律探究性問題
先觀察下列等式,,再回答下列問題.
①=1+-=1,;
②=1+-=1;
③=1+-=1.
(1)請(qǐng)你根據(jù)上面三個(gè)等式提供的信息,,寫出的結(jié)果,;
(2)請(qǐng)你按照上面各等式反映的規(guī)律,試寫出用
含n的式子表示的等式(n為正整數(shù)).
解析:(1)從三個(gè)等式中可以發(fā)現(xiàn),,等號(hào)右邊第一個(gè)加數(shù)都是1,,第二個(gè)加數(shù)是個(gè)分?jǐn)?shù),設(shè)分母為n,,第三個(gè)分?jǐn)?shù)的分母就是n+1,,結(jié)果是一個(gè)帶分?jǐn)?shù),整數(shù)部分是1,,分?jǐn)?shù)部分的分子也是1,,分母是前項(xiàng)分?jǐn)?shù)的分母的積;(2)根據(jù)(1)找的規(guī)律寫出表示這個(gè)規(guī)律的式子.
解:(1)=1+-=1,;
(2)=1+-=1(n為正整數(shù)).
方法總結(jié):解答規(guī)律探究性問題,,都要通過仔細(xì)觀察找出字母和數(shù)之間的關(guān)系,通過閱讀找出題目隱含條件并用關(guān)系式表示出來.
1.二次根式的定義
一般地,,我們把形如(a≥0)的式子叫做二次根式.
2.二次根式有意義的條件
被開方數(shù)(式)為非負(fù)數(shù),;有意義?a≥0.
通過將新知識(shí)與舊知識(shí)進(jìn)行聯(lián)系與對(duì)比,隨后由學(xué)生熟悉的實(shí)際問題出發(fā),,用已有的知識(shí)進(jìn)行探究,,由此引入二次根式.在教學(xué)過程中讓學(xué)生感受到研究二次根式是實(shí)際的需要,體會(huì)到數(shù)學(xué)與實(shí)際生活間的緊密聯(lián)系,,以此充分激發(fā)學(xué)生學(xué)習(xí)的興趣.
二次根式教學(xué)設(shè)計(jì)
《二次根式》教學(xué)反思